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Figure 1. Generated images of the EmotiCrafter. Given a prompt and Valence-Arousal (V-A) values, our method can generate an emotional

image that reflects the input prompt and aligns with the specified emotion values. By adjusting the V-A values, our method can also generate

images that evoke discrete emotions, such as sadness, relaxation, anger, and amusement.
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research on visual emotion analysis is extensive, limited
work has been done on helping users generate emotion-
ally rich image content. Existing work on emotional image
generation relies on discrete emotion categories, making it
challenging to capture complex and subtle emotional nu-
ances accurately. Additionally, these methods struggle to
control the specific content of generated images based on
text prompts. In this paper, we introduce the task of con-
tinuous emotional image content generation (C-EICG) and
present EmotiCrafter, a general emotional image genera-
tion model that generates images based on free text prompts
and Valence-Arousal (V-A) values. It leverages a novel
emotion-embedding mapping network to fuse V-A values



into textual features, enabling the capture of emotions in
alignment with intended input prompts. A novel loss func-
tion is also proposed to enhance emotion expression. The
experimental results show that our method effectively gen-
erates images representing specific emotions with the de-
sired content and outperforms existing techniques.

1. Introduction
Emotions are fundamental to human experiences and play

a critical role in shaping how people perceive and interact

with the world. Research has shown that emotions affect

memory [15, 19, 25, 45] and comprehension [16, 38, 40],

which are crucial for effective communication. As a result,

content creators increasingly recognize the importance of

incorporating emotions to enhance audience engagement.

While research on visual emotion analysis is exten-

sive [13, 49, 58], there is limited work on generating emo-

tionally rich image content. Some early studies explored

emotional content generation techniques within specific do-

mains such as facial expressions [2, 46] or landscapes [24].

EmoGen [50] generates images based on a given emotion

tag (e.g., happy or sad), which pioneered the domain-free

emotional image content generation (EICG) task. However,

it has two critical limitations: (1) the image is generated

from an emotion tag instead of a text prompt, making the

generated content difficult to control; (2) while the discrete

emotion tags used in EmoGen are easy to understand, psy-

chologists have not achieved a consensus on the emotion

categories [60]. The limited scope of discrete emotion tags

falls short of capturing nuanced emotions.

To address the above issues, we propose the continu-

ous emotional image content generation (C-EICG) task and

present EmotiCrafter, the first C-EIGC model that gener-

ates emotional images using free-text prompts and continu-

ous Valence-Arousal (V-A) values defined in the V-A model

(a well-known psychological continuous emotion model)

[33]. V-A model represents emotions in a two-dimensional

Cartesian space (Figure 2), where Valence quantifies pleas-

antness (negative to positive) and Arousal measures inten-

sity (calm to excited). We utilize a [-3, 3] range for Valence

and Arousal [10, 21]. The continuous V-A space enables

smooth transitions and nuanced emotional shifts beyond

the capability of discrete labels (e.g., shifts from “bored”

to “tired” of a character’s state in a video). Specific emo-

tional values in this space have been investigated in prior

work [34], and such fine-grained modeling is particularly

beneficial for human–computer interaction [2]. Leverag-

ing this model, EmotiCrafter captures subtle affective vari-

ations via precise (V, A) positioning. The contributions of

this paper are as follows:

• We propose a novel task, continuous emotional image

content generation (C-EICG), and develop the first ded-

Figure 2. Valence-Arousal model.

icated model for this purpose. Our model introduces

an emotion-embedding network that integrates contin-

uous Valence-Arousal (V-A) values with text prompts.

These fused features are then injected into Stable Diffu-

sion XL [28] using cross-attention mechanisms, enabling

precise control over both content and emotional expres-

sions in the generated images.

• We propose a novel loss function that enhances the emo-

tional resonance of generated images. By amplifying the

difference between neutral and emotional text features,

our approach enables the model to capture more distinct

emotional variations. Additionally, the loss function in-

corporates the V-A distribution to address data imbalance,

further refining the model’s ability to generate images

with rich, accurate emotional expressions.

• We constructed an emotional prompts dataset to train the

emotion-embedding network, where each sample consists

of a neutral prompt and an emotional prompt that share

the same core meaning but express a specific emotion cor-

responding to a given pair of V-A values.

2. Related work
In this section, we present a review of the related work,

specifically focusing on visual emotion analysis, image

emotion transfer, and conditional image generation.

2.1. Visual Emotion Analysis
Visual emotion analysis refers to the computational recog-

nition and interpretation of human emotion [57] in visual

media, such as images or videos. It has been a prominent re-

search area, with most efforts focusing on the classification

of discrete emotions [4, 42, 47, 48, 52]. However, discrete

emotion categories limit the ability to capture the nuanced

emotions [7], leading to an increased focus on continuous

emotion analysis in images [59].

Much of the continuous emotion analysis remains cen-

tered on facial expression analysis [9, 11, 22, 37, 54].

While effective, facial analysis can overlook crucial con-



textual information that influences emotional interpreta-

tion. This drives studies to focus on emotions in objects

or individuals within their environment, rather than just

faces[12, 13, 20, 21]. For example, Kosti et al. [12] com-

bined person-specific characteristics with the context of the

scene to predict continuous emotional dimensions such as

arousal, valence, and dominance. Kragel et al. [13] pro-

posed EmoNet to extract visual features such as facial ex-

pressions, body posture, and scene elements from images

to predict valence and arousal values. Recently, Mertens et
al.[21] tested multiple backbones (such as ResNet, CLIP,

DINO, etc.) for prediction of valence and arousal, demon-

strating strong performance across various architectures.

Previous studies have achieved high accuracy in predict-

ing continuous emotions in images, demonstrating a cor-

relation between continuous emotions and visual elements.

Building on this insight, our work moves beyond prediction

to explore how continuous emotions can be actively embed-

ded within generated content.

2.2. Image Emotion Transfer
Image Emotion Transfer (IET) focuses on editing the con-

tent of the images to evoke different emotions [17, 27,

43, 61]. For instance, Peng et al. [27] achieved emotion

transfer by adjusting color tones and texture-related fea-

tures. Zhu et al. [61] introduced a method that separates

high-level emotion-relevant features (e.g., object shapes

and scene layout) from low-level emotion-relevant features

(e.g., brightness). By applying GANs, they transferred

emotions between images while preserving their original

structure. Building on these methods, Weng et al. [43] pro-

posed the Affective Image Filter, which uses a multi-modal

transformer to process both text and image inputs. With the

emergence of text-to-image models, IET has expanded into

new applications based on instructive commands. For ex-

ample, EmoEdit [51] used GPT-4V to build emotion factor

trees that map abstract emotions to specific visual elements

and employed the InstructPix2Pix model to apply emotion-

driven content and color adjustments to images.

Current methods primarily extract specific features, fo-

cusing on certain visual elements or emotional cues, which

can limit the depth of emotional expression. In contrast, our

method broadly learns a variety of emotion-influencing fea-

tures, and it could accept natural language prompts as input.

2.3. Conditional Image Generation
Conditional image generation aims to create images that

align with specific input conditions, such as text [3, 28,

30, 31], reference images [53], subjects [6, 32], and depth

maps [23, 55]. To enhance quality, researchers have devel-

oped specialized approaches, such as Diffusion Transform-

ers (DiT)[26], which use transformer-based diffusion for

denoising, and Visual Autoregressive Modeling (VAR)[36],

which encodes images into discrete tokens for autoregres-

sive prediction across scales. However, these state-of-the-

art methods rely on discrete labels, limiting flexibility and

control. In contrast, our approach offers greater general-

ization by leveraging Stable Diffusion XL [28] to generate

emotional images from free-text prompts.

Despite these progresses, incorporating emotion as a

condition for image generation remains underexplored.

EmoGen [50] pioneered the generation of emotional image

content (EIGC) by mapping emotional features to semantic

features to generate emotional images. However, EmoGen

struggles to understand natural language, limiting its capac-

ity to effectively control specific content. Its reliance on

discrete emotions also limits its practical applicability.

Our method bridges this gap by embedding continu-

ous emotion into textual features, enabling image genera-

tion models to use continuous emotion for emotion control.

Unlike label-based methods, our method supports free-text

prompts for flexible content control.

3. Method
In this section, we introduce the technique details of the

proposed EmotiCrafter.

3.1. Overview
Our method generates emotional images Iemo from two in-

puts (Figure 3): a free-text prompt describing the desired

content, and a pair of V-A values (v, a) specifying the emo-

tion. First the prompt encoder E converts the text prompt

into feature fn, which is then processed by an emotion-

embedding network M to produce emotional prompt fea-

ture f̂e that integrate the V-A values:

f̂e = M(fn|(v, a)) (1)

Next, this feature is injected into Stable Diffusion XL G via

its cross-attention mechanism to generate the emotional im-

ages: Iemo = G(f̂e). To enhance emotional expressiveness,

we introduce a loss function (Fig.3(b.2)) that leverages the

V-A distribution and emphasizes the differences between

neutral and emotional prompt features. This ensures that

the generated images accurately convey both the intended

emotions and content. Additionally, we construct a dataset

(Fig.3(a)) that pairs neutral and emotional prompts with the

corresponding V-A values.

3.2. Emotion-Embedding Network
The emotion-embedding network M generates the emo-

tional prompt feature by integrating a pair of V-A val-

ues with a neutral prompt feature (Fig.3(b.1)). First, a V-

A encoder converts the V-A values into feature vectors.

Then, an emotion injection transformer—modified from

GPT-2[29]—fuses these vectors with the neutral prompt



Emotion-
Embedding 
Network  

A small white dog walking 
down a path.

A small white dog joyfully 
exploring a serene forest 
path, surrounded by lush 
greenery and dappled 
sunlight, evoking a peace-
ful and content atmosphere.

Loss function

Figure 3. Overview of our method. Specifically, we take the following steps. (a) We collect an image dataset annotated with V-A values,

neutral prompts, and emotional prompts. These prompts are then encoded into features by prompt encoder E . (b) Next, we design (b.1) an

emotion-embedding network M to embed V/A values into textual features based on the transformer architecture, and (b.2) a specialized

loss function to enhance the emotional resonance of generated images. The output of the mapping network serves as the condition for the

image generation model G to generate emotional images.

Figure 4. Structure of Emotion Injection Block. It accepts hid-

den state hi−1 as input and produces hi as output. The V-feature

ev and A-feature ea represent the emotion features, which are in-

jected through the cross-attention module.

feature, preserving the original textual context while infus-

ing emotional content.

V-A Encoder. The V-A Encoder converts a pair of V-

A values into feature vectors using two separate multilayer

perceptrons (MLPs). One MLP processes the Valence value

to produce V-feature ev , and the other processes the Arousal

value to generate A-feature ea. These features are then fed

into the emotion injection transformer network for further

emotion infusion.

Emotion Injection Transformer (EIT). The Emotion

Injection Transformer (EIT) leverages a modified GPT-2 ar-

chitecture to seamlessly integrate V/A-features into textual

features. Its process consists of three stages: input projec-

tion, emotion injection, and output projection.

First, we project the input neutral prompt feature fn into

the transformer’s feature space:

h0 = Pin(fn) + PE, (2)

where h0 represents the initial hidden state; Pin(·) is a linear

projection layer, and PE denotes positional embedding [39].

In the next, we inject emotion into fn via 12 sequen-

tial Emotion Injection Blocks (EIBs) corresponding to 12

transformer blocks. Each block outputs a hidden state:

hi = EIB(hi−1, ev, ea), i ∈ {1, . . . , 12} (3)

where hi is the output of the i-th EIB(·). As shown in Fig-

ure 4, each EIB enhances the transformer block through a

cross-attention mechanism:

h′
i = self-attn(LN(hi−1)) + hi−1 (4)

h
(v)
i = cross-attn(LN(h′

i), ev) + h′
i (5)

h
(v,a)
i = cross-attn(LN(h

(v)
i ), ea) + h

(v)
i (6)

hi = fnn(LN(h
(v,a)
i )) + h

(v,a)
i (7)

where h′, h(v), h(v,a) are the intermediate hidden variables;

LN(·) is the LayerNorm; self-attn(·) denotes self-attention,

employed to capture context dependencies; cross-attn(·) is

cross-attention for injecting ev and ea; fnn(·) is a feed-

forward network that adapts the complexity of the emo-

tional embedding process. We also remove the causal mask

typically used for next-token prediction from the original

transformer model to fit our task.

Finally, the output of the last (i.e., the 12th) injection

block h12 is projected back to SDXL’s prompt feature space

via Pout (a linear layer and a LayerNorm layer) to predict

the residual between emotional and neutral prompt features,

which represents a semantic shift between emotional and

neutral prompts:

f̂r = Pout(LN(h12)) (8)

The final emotional prompt feature is obtained by adding

this residual to the original neutral prompt feature:

f̂e = f̂r + fn (9)

The above emotion embedding network is trained by

minimizing the averaged expectation of the difference

between the predicted emotional prompt feature f̂e =
M(fn|(v, a)) and the scaled target emotional prompt fea-

ture f t
e , using the loss function described in Equation 10.



L =
1

n
E

(
1

d(v, a)
‖f̂e − f t

e‖2
)

(10)

where n is the number of feature elements; E(·) denotes the

expectation; d(v, a) is a density function that describes the

distribution of V-A values in the training sample.

To effectively embed emotions and address the chal-

lenges posed by the uneven distribution of V-A values in the

dataset, this loss function incorporates two key strategies to

improve the model’s performance:

Scaled Residual Learning. To better capture pro-

nounced emotional changes in generated images, we en-

large the target residuals:

f t
e = fn + α (fe − fn)︸ ︷︷ ︸

residual feature

, (11)

where fe is the emotional prompt feature, fn is the neutral

prompt feature, and α is a scale factor, we set its value to

1.5 based on the ablation study.

V-A Density Weighting. To mitigate the effects of the

imbalanced distribution of the training samples, we weigh

the loss inversely proportional to the density of training

samples in the V-A space. The density is estimated using

Kernel Density Estimation (KDE) [5] with a Gaussian ker-

nel, denoted as d(v, a):

d(v, a) =
1

n

n∑
i=1

KH((v, a)− (vi, ai)), (12)

where KH is a 2D Gaussian kernel with bandwidth H; n is

the number of training samples; (vi, ai) are the V-A values

of the i-th training sample. The bandwidth H is selected us-

ing Silverman’s rule of thumb to provide optimal smoothing

of the density estimation.

3.3. Dataset and Training
To train the emotion-embedding network, we constructed

a dataset of paired neutral and emotional prompts with

corresponding Valence-Arousal (V-A) values (Figure 3(a)).

These pairs were automatically generated using GPT-4

based on 39,843 images with human-annotated V-A val-

ues from publicly available datasets, including OASIS [14],

EMOTIC [12], and FindingEmo [21]. Specifically, GPT-4

was used to generate neutral prompts with objective image

descriptions and emotional prompts that emphasize affec-

tive attributes such as color, lighting, and texture, which in-

fluence emotional perception. To ensure data reliability, all

LLM-generated prompts underwent crowd-sourced verifi-

cation, with disagreements resolved through a voting mech-

anism among annotators.

The proposed emotion embedding network is trained on

two NVIDIA A800 GPUs using the aforementioned dataset.

We employ the AdamW [18] optimizer with a weight decay

of 1e-5 and a learning rate of 1e-3. The training process

spans 200 epochs with a batch size of 768, completing in

approximately 7 to 8 hours.

4. Evaluation

4.1. Generation Results
Figure 1 shows the proposed technique’s ability to achieve

continuous and effective control over both emotion and con-

tent during image generation. Meanwhile, Figure 5 high-

lights four key capabilities: (a) emotion-content decou-

pling, where V-A values override emotional cues in the

prompt, allowing typically positive concepts to be rendered

with negative emotions; (b) compatibility with discrete

emotion categories; (c) content-independent generation,

where images generated from empty prompts and speci-

fied V-A values maintain emotional consistency without se-

mantic constraints; and (d) fine-grained emotional control,

demonstrated through V-A increments of 0.2, showcasing

the model’s sensitivity to subtle emotional variations.

4.2. Comparisons
To estimate the effectiveness of the proposed method, we

built four baselines based on existing techniques.

Baselines. We established baselines for comparison us-

ing two strategies: (1) directly injecting emotion features

into the image generation modules of SDXL, such as UNet,

and (2) modifying the input text prompt using emotion fea-

tures to influence the generated image’s content, similar to

the proposed method.

As a result, four different baselines were built: (1)

Cross Attention: inject the emotion features (ev, ea) into

the UNet in SDXL via its cross-attention mechanism based

on IP-Adapter [53]; (2) Time Embedding: directly add

emotion features (ev, ea) to the time embedding of the

UNet in SDXL. (3) Textual Inversion: use the text inver-

sion technique [6] to embed emotion features (ev, ea) into

prompt templates with predefined emotion placeholders. (4)

GPT-4+SDXL (GPT-SD): use GPT-4 [1] to rewrite the in-

put text according to (v,a) values to generate an emotional

SDXL prompt for image generation.

Qualitative Comparison. We evaluate the generated

images based on three criteria: (1) the effectiveness of emo-

tion embedding, (2) image-prompt similarity, and (3) the

continuity of emotional variations as V-A values change.

Figure 6 demonstrates that the baseline methods—Cross

Attention, Time Embedding, and Textual Inversion—tend

to produce nearly identical outputs regardless of emotional

variation. This is because the loss terms of these baselines

primarily align low-level image features (e.g., SDXL’s la-

tent space), which are highly correlated with prompt con-

tent but struggle to capture subtle emotional cues when

both prompts and V-A values are provided. Notably, Tex-



(a) (b)

(c) (d)

Figure 5. Results under multiple inputs. (a) Overriding semantic content (‘a child in the amusement park’) with sad V-A (-2,-2); (b)

Discrete emotion mapping in V-A space as emotion input; (c) Empty-prompt generation with pure emotion condition; (d) Fine-grained

control of V-A variations with a granularity of 0.2.

Figure 6. Qualitative comparisons with baselines. These images are generated at varying V-A values, specifically -1.5, 0, and 1.5. Only our

approach and the GPT-4+SDXL successfully generate images that clearly reflect emotional variations. Notably, our results show enhanced

continuity, indicating superior controllability over continuous V-A values compared to the GPT-4+SDXL.

tual Inversion often produces images with a persistent pur-

ple tint. Furthermore, all methods faithfully generate con-

tent aligned with the given prompts. However, for image

continuity, we focus on comparing our method with GPT-

4+SDXL, as they are the only two capable of generating

distinct emotional variations. Figure 7 provides a more

detailed comparison, showing that our method maintains

smooth emotional transitions even under extreme V-A con-

ditions, whereas GPT-4+SDXL introduces noticeable dis-

continuities (e.g., in the V=3 column).

Quantitative Comparison. We compare our method

against several baselines using the following metrics: (1)

V/A-Error evaluates the absolute error between the pre-

dicted V/A of the generated images and the input V/A. (2)

CLIPScore [8] assesses the similarity between the input text

and the generated images. (3) CLIP-IQA [41] leverages a

pre-trained CLIP model to evaluate image quality without

requiring reference images. (4) LPIPS-Continuous utilizes

A-Error ↓ V-Error ↓ CLIPScore ↑ CLIP-IQA ↑
Cross Attention 1.923±1.153 2.080±1.438 26.266±2.381 0.949±0.046

Time Embedding 1.941±1.168 2.031±1.348 26.566±2.125 0.786±0.164

Textual Inversion 1.958±1.188 1.923±1.170 22.346±3.594 0.370±0.111

GPT-4+SDXL 1.860±1.090 1.517±1.060 25.907±1.949 0.906±0.066

Ours 1.828±1.085 1.510±1.074 23.067±2.655 0.881±0.099

Table 1. Comparison on emotion accuracy, prompt fidelity, and

image quality across different baselines, evaluated on 3,300 im-

ages per method (132 prompts × 5 V values × 5 A values). Our

method achieves the highest performance in emotion accuracy

while maintaining comparable results in prompt fidelity and im-

age quality. The slight decrease in prompt fidelity is expected, as

modifying emotional content affects semantic alignment.

the Learned Perceptual Image Patch Similarity [56] to mea-

sure the continuity of the change in image as V/A changes.

As shown in Table 1, our method achieves the low-

est (best) V/A-Error on average. While Cross Attention

and Time Embedding achieve the highest CLIP-IQA and

CLIPScore, respectively, these methods fail to generate



Figure 7. A more comprehensive comparison with the GPT-

4+SDXL for the prompt “A group of people is skiing in a snow

hill.” Our approach maintains continuity even under extreme V/A

conditions. Conversely, GPT-4+SDXL displays noticeable discon-

tinuities (e.g., in the V=3 column).

emotionally expressive images (Figure 6).

Our method exhibits a slight decrease in CLIPScore
compared to the baselines, which we attribute to the inher-

ent trade-off between emotional modulation and strict se-

mantic alignment. However, the high CLIP-IQA score in-

dicates that our method produces high-quality images. Ad-

ditionally, as shown in Table 2, our approach demonstrates

superior continuity compared to GPT-4 + SDXL.

Ours GPT-4+SDXL

LPIPS-Continuous↓ 0.220±0.064 0.361±0.059

Table 2. Continuity comparison between our method and baseline.

Ours GPT-4+SDXL

Study I

A-Ranking Consistency ↑ 0.759±0.273 0.165±0.379

V-Ranking Consistency ↑ 0.887±0.245 0.584±0.259

A-Error ↓ 1.327±1.120 2.029±1.446

V-Error ↓ 0.692±0.682 1.229±1.026

Study II
Emotion Consistency ↑ 4.215±0.715 3.525±1.065

Emotion Smoothness ↑ 4.240±0.828 3.195±1.163

Table 3. Our method outperformed the baseline.

Figure 8. User Study Results ( *p<0.05, **p<0.01, ***p<0.001)

4.3. User Study

We conducted two user studies with 20 college students to

evaluate the effectiveness of our method by comparing it to

GPT-4+SDXL (the baseline).

Study I. In the first experiment, we evaluated whether

the generated images’ emotions align with human per-

ception. Two image collections were prepared—one for

Arousal (A) and one for Valence (V)—each comprising 20

sets (10 from our method and 10 from the baseline) of 5 ran-

domized images with varying A or V values. Participants

reordered the images by perceived intensity and estimated

each image’s V and A values. We then computed Kendall’s

τb (with τb = 1 indicating perfect alignment) to assess or-

dering accuracy and calculated the absolute error between

the estimated and ground truth values.

Study II. In the second experiment, we assessed whether

the generated images could effectively reflect continuous

emotional changes (i.e., V-A values). We generated 20 im-

age sets (10 per method), each containing 25 images with

V-A values varying gradually from -3 to +3 ( Figure 7). Par-

ticipants rated each set on a 5-point Likert scale regarding

(1) the alignment between V-A changes and image content,

and (2) the smoothness of the content transition.

Analysis & Results. We conducted a Shapiro-Wilk

test [35] to assess normality and applied the Wilcoxon

Signed Rank test [44] to evaluate statistical significance.

Our results indicate that our method outperformed the base-

line across all metrics (Table 3), with statistically signif-

icant improvements in V/A Ranking, V/A Error, Consis-

tency, and Smoothness (Figure 8).



Figure 9. Abalation Study. Images are generated from the prompt “An oil painting shows an astronaut.” As α increases, image-prompt

similarity decreases, while emotional variations increase. The usage of d(a, v) enhances the accuracy of emotional changes.

Figure 10. The effectiveness of the scaling factor α. The method

with α = 1.5 (�) surpasses the performance indicated by the

regression line (- - -).

A-Error ↓ V-Error ↓ CLIPScore ↑
Ours 1.828±1.085 1.510±1.074 23.067±2.655

w/o d(v, a) 1.829±1.083 1.546±1.082 21.977±0.066

Table 4. The effectiveness of d(v, a).

4.4. Ablation Study

We performed ablation experiments to assess the contribu-

tion and effectiveness of the proposed loss function.

Effectiveness of the Scaling Factor α. We evaluated

how varying α affects CLIPScore and V/A-Error (Fig-

ure 10). As α increases, CLIPScore decreases (indicat-

ing reduced semantic alignment), while V/A-Error also de-

creases (indicating improved emotional accuracy). This

trend is further illustrated by the examples in Figure 9.

Based on these findings, we set α = 1.5 as an optimal trade-

off, though users can adjust α to suit their specific needs.

Effectiveness of the Density Weighting d(v, a). We

compare our full method with a variant that omits d(v,a)

from the loss function. As shown in Table 4, including

d(v,a) leads to improvements in both CLIPScore and V/A-

Error. This positive effect is further illustrated in Figure 9.

5. Conclusion and Limitations
In this paper, we introduce continuous emotional image

content generation (C-EICG) and present EmotiCrafter, a

novel method that generates emotionally expressive im-

ages using continuous Valence-Arousal (V-A) values. Our

emotion-embedding network integrates V-A values into tex-

tual features, and extensive experiments show that our ap-

proach reliably aligns images with both user prompts and

specified emotions. We believe this work will advance af-

fective computing and image generation, and we will re-

lease our code and data to foster further research.

Although our method achieved promising results, it still

has some limitations need to be addressed in the future.

First, controlling image generation based on arousal re-

mains more challenging than controlling based on valence.

This is consistent with prior research in visual emotion anal-

ysis, which has found that arousal is harder to predict due

to lower inter-annotator agreement [21]. Second, our ap-

proach frequently generates images featuring human activ-

ities even when such activities are not mentioned in the

prompts. This likely stems from the limited representation

of non-human scenes in our training data and could be mit-

igated by incorporating a more diverse range of non-human

scenarios. Third, our method occasionally modifies users’

input prompts to better align with the specified emotional

prompts, resulting in a slight semantic shift that affects the

generated images. We believe this issue could be addressed

by adding a semantic preservation term to the loss function.
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