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Abstract— The exploratory visual analysis (EVA) of time series data uses visualization as the main output medium and input interface
for exploring new data. However, for users who lack visual analysis expertise, interpreting and manipulating EVA can be challenging.
Thus, providing guidance on EVA is necessary and two relevant questions need to be answered. First, how to recommend interesting
insights to provide a first glance at data and help develop an exploration goal. Second, how to provide step-by-step EVA suggestions to
help identify which parts of the data to explore. In this work, we present a reinforcement learning (RL)-based system, Visail, which
generates EVA sequences to guide the exploration of time series data. As a user uploads a time series dataset, Visail can generate
step-by-step EVA suggestions, while each step is visualized as an annotated chart combined with textual descriptions. The RL-based
algorithm uses exploratory data analysis knowledge to construct the state and action spaces for the agent to imitate human analysis
behaviors in data exploration tasks. In this way, the agent learns the strategy of generating coherent EVA sequences through a
well-designed network. To evaluate the effectiveness of our system, we conducted an ablation study, a user study, and two case studies.
The results of our evaluation suggested that Visail can provide effective guidance on supporting EVA on time series data.

Index Terms—Time Series Data, Exploratory Visual Analysis, Reinforcement Learning

1 INTRODUCTION

A time series is a consecutive sequence of data points that are measured
over time and is prevalent in various application domains such as
health and finance. To understand new time series data, exploratory
visual analysis (EVA) stands out as a preferred method that involves
identifying questions of interest, investigating visualized data, and
formulating hypotheses [6]. However, conducting EVA on time series
data is challenging for its target users, who are typically experts in
their domain but novices with regard to visual analytics. EVA primarily
relies on visualization as the mode of output and input interface for
exploration, which can be demanding or even overwhelming for users
to interpret and manipulate [10]. “Which variable to look at?” or “How
to set visualization configurations and parameters?” Such questions
are not easily answered and thus appropriate guidance is needed to
narrow the gap that hinders effective continuation of EVA on time
series data [10].

Prior research in EVA for time series data has focused on computa-
tional analysis [58, 74] or visual representation [9, 40, 73]. However,
few attempts have been made to provide guidance on walking users
through the process of EVA. Such guided sequencing of actions and
discourse with data can facilitate users’ analytical reasoning tasks [51].
To automate guided EVA for time series data, two challenges need
to be addressed: (i) goal unclear. Typically, an analyst starts EVA
without a clear exploration goal until he or she learns more about the
data. Thus, interesting data insights should be automatically extracted
and recommended to users, providing a first glance at data and helping
develop a clear goal; and (ii) path unknown. The path leading to
the desired goal may also be unknown to the analyst, especially when
dealing with time series data that is usually characterized by multiple
variables or long sequences. Thus, it is important to provide the analyst
with step-by-step EVA suggestions that help determine which parts of
the data to explore.

• Yang Shi, Bingchang Chen, Ying Chen, Tian Gao, Xiaohan Jiao, and Nan
Cao are with Intelligent Big Data Visualization Lab at Tongji University
while Zhuochen Jin and Ke Xu are with Huawei Cloud Computing
Technologies Co., Ltd. Nan Cao is the corresponding author.
E-mail: {yangshi.idvx, 2131933, 2131926, gaotian, xh_xiaohan,
nan.cao}@tongji.edu.cn. {chjzcjames, lukexuke}@gmail.com.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

To address the above challenges, we developed Visail, a reinforce-
ment learning (RL)-based system to support guided EVA on time series
data. Specifically, given a time series dataset uploaded by a user, Vi-
sail can generate an EVA sequence consisting of multiple steps, with
each step illustrating a time subsequence of interest and its correspond-
ing data insight. Here, insight refers to a unified formulation of in-
teresting data patterns [19]. To do this, we first collected a set of
exploratory data analysis (EDA) notebooks to understand common in-
sights regarding time series data and their co-occurrence relationships.
Then, we designed an RL-based algorithm to learn how to explore
insights and form an EVA sequence, steering a coherent path to analyze
data, and helping develop an exploration goal. Next, Visail presents
the EVA sequence through visualization charts combined with textual
descriptions. Visail also integrates an online feedback mechanism,
empowering users to modify the sequence based on their preferences
and then update the generation accordingly. We evaluated Visail on
its ability to support EVA via an ablation study, a user study, and two
case studies. The results of our evaluation suggested that Visail can
effectively and efficiently support guided EVA on time series data.

In summary, the main contributions of this work are as follows:
• System. We developed Visail1 to support users in conducting EVA on

time series data by generating step-by-step suggestions. Visail shows
the suggestions in the form of captioned charts to facilitate commu-
nication and provides various interaction techniques for authoring.

• Algorithm. We proposed an RL-based algorithm to generate EVA
sequences. Through the state space, action space, and reward func-
tion specifically designed for time series data, the algorithm learns
from the environment to perform data exploration tasks.

2 RELATED WORK

Our work builds on prior research on guided data exploration, visual
analysis of time series data, and automated data insights.

2.1 Guided Data Exploration
Exploratory Data Analysis (EDA) was first raised by John Tukey [20],
which focuses on exploring and understanding a new dataset. Since
then, researchers have explored how to guide EDA where the goal is
to discover insights and present them as a sequence of interesting data
“views” [22]. For example, ATENA [5] and Dora The Explorer [44]
both formulate EDA as a control problem and employ reinforcement
learning (RL) to generate a sequence of operations (e.g., filter, group-
by) and data queries that optimize the exploration process.

1https://idvxlab.com/visail/
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As a subset of EDA, Exploratory Visual Analysis (EVA) relies on
visualization as the primary output to derive insights and channels of
interaction [6]. To facilitate guided EVA, a suite of tools has been
developed [17, 52, 53, 67, 69, 76]. For example, ChartSeer [76] recom-
mends the next exploration step to users by calculating the similarity
between charts based on the Vega-Lite representation of charts [49]
while other work recommends next interesting visualizations to users
by embodying analytical actions that correspond to different operations
on a dataset [11, 38]. To show the results of EVA, different forms
of representation were used such as dashboards [17, 30, 69] and fact
sheets [53, 65]. For example, Dashbot [17] employs RL to explore
the large space of chart combinations by taking recommended actions
(e.g., add, change) and generating dashboards while Calliope [53] ex-
plores data using a Monte Carlo tree search and presents the top-rated
path as a data story consisting of multiple data facts, while each data
fact is visualized as a captioned chart.

The aforementioned work was geared toward multi-dimensional
tabular data. Our work focuses specifically on time series data, which
raises new and unique challenges [57] and proposed to leverage RL to
provide EVA guidance on time series data for the first time. Also, our
work used a mixed-initiative approach [28] that not only guides the user
exploring data but also the user can guide Visail providing feedback on
the insights generated.

2.2 Visual Analysis of Time Series Data
Visual analysis of time series data can be placed along a spectrum of
goal specifications, from targeted question answering to open-ended ex-
ploration [6]. In terms of targeted question answering, existing studies
focused on developing visual analysis tools for various questions, which
are mainly categorized into five visual analysis tasks, including summa-
rization [23, 45], anomaly detection [41, 60], comparison [24, 68], pre-
diction [71], and causality analysis [18]. For example, MulTiDR [23]
uses dimensionality reduction to obtain a visual summary of exten-
sive, high-dimensional time series data while TreeRoses [60] overlays
the visualization of periodic multivariate time series data for a more
straightforward interpretation of patterns and outliers.

On the other end of the spectrum, open-ended exploration describes
a common scenario where an analyst receives an unfamiliar dataset
and lacks a clear goal to start the analysis process. Several research
efforts have been devoted to open-ended exploration through interactive
browsing and querying [58, 74, 75, 77]. For example, KronoMiner [74]
visualizes time series data based on a radial display, providing users
with rich interaction to explore different patterns or drill into details.
Sips et al. [58] identifies potential interesting patterns from environmen-
tal time series data using a matrix visualization and offers interactions
for users to explore the detected patterns.

The above visual analysis tools were primarily designed for those
who are equipped with visual analytics skills and focus on single-step
guidance. In contrast, our work considers users who lack visual analyt-
ics expertise and falls under the open-ended exploration dichotomy of
the spectrum, helping users gain a brief understanding of time series
data by steering the process of EVA.

2.3 Automated Data Insights
Data insights describe a set of interesting data patterns that “represent
the nuanced understanding of the data shaped by a user’s mental model
as well as the social and organizational context where findings are
discovered” [37]. Data insights can be characterized by their properties
of being actionable, collaboratively refined, unexpected, confirmatory,
spontaneous, trustworthy, and interconnecting [37]. Given their impor-
tance, data insights have received increasing interest in the visualization
community and more tools have been developed for their automatic
generation. Common types of automated data insights include outliers,
value/derived value, correlation, difference, trend, distribution, extreme,
visual motifs, cluster, metadata, rank, and compound fact [14, 36].

In terms of tasks supported by automated data insights, many re-
search efforts have centered on exploratory analysis, communication,
and focused analysis [36]. Tools focused on the task of exploratory
analysis aim to provide a first glance at data before modeling and

analysis is performed [7, 15, 16, 19, 62]. For example, SeeDB [62]
explores the space of visualizations and recommends visualizations for
trends to facilitate visual analytics. To support the task of communi-
cation, tools have been developed to generate charts combined with
textual descriptions [9,53,59,65] For example, Datashot [65] generates
infographic-style fact sheets while Calliope [53] generates a sequence
of data facts connected by coherent relations to support data-driven
storytelling. Also, directed analysis helps answer high-level questions
by recommending possible data facts [34, 35]. Inspired by the afore-
mentioned work, Visail also applies the auto-insights techniques to
extract data insights but takes a step further by generating step-by-step
EVA suggestions.

3 PRELIMINARY STUDY

To motivate the design of Visail, we first conducted a series of semi-
structured interviews with data analysts to understand the design re-
quirements of Visail. Based on their feedback, we then collected a set
of EDA notebooks to identify those insight types that are commonly
uncovered in the analysis of time series data.

3.1 Formative Interviews with Data Analysts
To understand how data analysts conduct open-ended EVA of time se-
ries data in practice, we collaborated with a database team of five mem-
bers from an information and communications technology company.
The members of this team, though well-versed in database systems,
were not visualization experts and had limited experience in using
complex visual analytic tools. During the ten-month collaboration,
we held regular meetings with these experts to discuss the design and
development of Visail. Example interview questions include “what
will interest you when given a new dataset to analyze” and “what is
important to you in tools for analyzing time series data?”. Later, three
iterations of Visail were developed and demonstrated to the five mem-
bers for the purpose of collecting feedback. By analyzing the findings
and challenges derived from the interview, we identified the following
design requirements.
DR1 Extracting data insights. Visail should automatically extract

data insights from a given time series dataset. These insights will
serve as building blocks of EVA and provide a basic understand-
ing of the dataset.

DR2 Generating EVA sequences. Visail should generate EVA se-
quences composed of the extracted insights to provide step-by-
step suggestions. A sequence should form a coherent EVA path
and covers important observations of the dataset, directing users
to the data of interest.

DR3 Supporting visual representation and user interaction. Vi-
sail should present the EVA sequences using a combination of
visualization charts and textual descriptions. Also, Visail should
support user interaction: users can explore time series data, edit
the extracted insights, and modify the EVA sequences.

DR4 Enabling online recommendation based on user modification.
Visail should support users in modifying specific steps of the
EVA sequences and automatically update the subsequent steps
based on their adjustment. Facilitating online recommendations
can involve users’ analysis preferences in the generation.

3.2 Data Collection and Analysis
To understand insight types that frequently emerge from an exploratory
analysis of time series data (DR1), we sought to collect relevant exam-
ples or cases. However, existing studies primarily focus on high-level
analysis tasks such as lookup and comparison [1] or more general data
types [3]. As an alternative, we turned our attention to exploratory
data analysis (EDA) notebooks (e.g., Jupyter Notebook), which are the
single most popular and effective means for data scientists to perform
EDA [48]. We collected EDA notebooks from Kaggle, which is one of
the largest data competition platforms with a collection of high-quality
EDA notebooks. First, we filtered competitions tagged with ‘time series
analysis’. Then, we searched for top-voted notebooks (with at least
10 votes) tagged with ‘exploratory data analysis’. The query returned
competitions, including a total of eight multivariate time series, with



an average length of 220,536 and an average number of variables of
31,707. Ten EDA notebooks were collected from each of the eight
competitions, resulting in 80 EDA notebooks in total.

An EDA notebook typically consists of two parts: the first part is
open-ended data exploration where analysts aim to get a preliminary
understanding of the dataset while the second part is devoted to more
focused analysis tasks such as prediction. Our analysis of the 80
notebooks focused on their first parts and specifically the concluding
sections called “observation” or “insights”, where analysts describe
their process of EDA and list insights observed from the data. To
analyze the EDA notebooks, we first coded the descriptions in these
sections based on the common types of data insights proposed by
Law et al. [36]. We also found that these insight types cannot cover all
the insight types introduced in these notebooks and thus added three
new insight types specifically related to time series data, including
autocorrelation, seasonality, and multivariate outlier. As a result, our
analysis arrived at eight insight types, which are described as follows.

Distribution (358, 28.8%) describes the overall pattern and devia-
tions (e.g., mean, variance) of a time series.

Extreme (196, 15.7%) is the time point with the leading value of a
time series.

Trend (182, 14.6%) shows the increasing or decreasing movement
of a time series over a period of time.

Correlation (176, 14.1%) measures the relationship between two or
more time series.

Similarity (125, 10.0%) measures the synchrony of time series data
by comparing multiple subsequences of one or multiple time series.

Outlier (94, 7.6%) refers to the time point or subsequence that
significantly deviates from the patterns of other values. Outliers can be
detected in both univariate and multivariate time series data.

Seasonality (92, 7.3%) describes the presence of variations that
appear at specific regular intervals in a time series.

Autocorrelation (22, 1.7%) measures the correlation of a subse-
quence with a delayed copy of itself. The correlation can be either
positive or negative.

After identifying the eight insight types from the EDA notebooks,
we attempted to analyze the co-occurrence relationships between them.
For example, after identifying an ‘outlier’, analysts might investigate
for ‘distribution’ to determine if such an outlier is random or systematic.
To do this, we leveraged the N-gram language modeling [26,31], which
is a commonly used Natural Language Processing technique. The N-
gram refers to a series of consecutive items with length n obtained by
splitting from the text. Inspired by the N-gram, we first coded each
EDA notebook as a sequence of insights and considered the sequence
as a ‘sentence’ (denoted as sentencei), where each insight is regarded as
a ‘word’ (denoted as wordi) in the sentencei. Then, we used a sliding
window with n = 2 as its size to scan each sentencei with a length
of m, resulting in 1,165 wordi pairs. Fig. 1 shows the co-occurrence
probability of wordi+1 (column) given wordi (row) by analyzing the
1,165 wordi pairs. The higher the probability P(wordi+1|wordi), the
more likely it is that the two corresponding insight types will co-exist
in a sequence.

4 PROBLEM FORMULATION

In this section, we introduce how we shaped the generation of EVA
sequences (DR2) into a reinforcement learning (RL) problem. First,

Fig. 1: The probability of co-occurrence relationships between the eight
insight types.

we described the Markov Decision Process (MDP) model, which forms
the foundation of RL. Next, we defined the state space, action space,
and reward function, through which an RL-based algorithm learns how
to generate EVA sequences without labeled training data.

4.1 MDP Model for EVA
The MDP model [8] describes a stochastic control process. It consists
of a set of possible states and a set of possible actions, which can be
denoted as follows,

MDP = {S,A,P,R,γ} , (1)

where S is the state space, A is the action space, P is probabilities of
transition between two states, R is the reward function, and γ is the
discount factor. An action an ∈ A is chosen based on the current state
sn ∈ S and taken to transfer from sn to sn+1 with probability P(sn,sn+1).
Then, such a pair of the state and action (sn,an) can get an immediate
reward rn defined by the reward function R. Given its characteristics,
the MDP model is often used to model data exploration tasks [5,17], as
analysts usually base their subsequent analysis on existing findings.

An EVA sequence refers to a sequence of small, incremental
steps [25, 66] while at each step, analysts take a data-driven action,
i.e., deriving an insight from data and presenting it as a visualization
chart [2]. Here, the action taken at a certain step is based on all the
insights explored in the previous steps. Using the MDP model, an
EVA sequence can be modeled as a sequence of state-action pairs
{(s1,a1),(s2,a2), · · · ,(sn,an)} while P(sn,sn+1) always equals to 1 as
it is a deterministic process. We employed RL to learn an agent that
maximizes the cumulative reward ∑

n
i=1 γ i−1ri when taking a series of

actions {a1,a2, · · · ,an}. Specifically, RL was chosen when consider-
ing: (i) the process of analysts trying different exploration methods to
arrive at exploration goals is naturally similar to RL exploring from
the environment and learning the optimal strategy to select actions;
(ii) the state space is exponentially large. Thus, it is difficult to use
rule-based algorithms to find optimal solutions in an acceptable time;
and (iii) a lack of EVA examples might pose a challenge for supervised
learning. RL is a self-learning algorithm and is bound to learn from its
experience without labeled training data. The details of the state space,
action space, and reward function in Equation 1 will be introduced in
the following subsections.

4.2 State Space
A state sn ∈ S describes all the insights {i1, i2, · · · , in} the agent explored
from the first step to the n-th step, which constitutes an EVA sequence
of length n. In another word, sn captures the current insight in as well
as the previous insights i1, i2, · · · , in−1, providing useful information
for the agent when choosing an action an to transfer from sn to sn+1.
An insight space I includes all the insights from a given time series
dataset while an EVA sequence can be derived from a specific EVA
process that explores the insight space I. A state space S enumerates
all the possible permutations of the insights from the insight space I.

S = {{i1, i2, · · · , i j, · · · , in}, i j ∈ I | n ∈ [1,N]} (2)

where i j denotes the j-th insight of an EVA sequence while N is the
maximum number of steps defined by a user.

To further formulate the insights included in the state space S, we
borrowed the definition of insight regarding tabular data [53, 65] as
metadata to describe the data patterns characterized by an insight. In
addition, we added value to the definition to capture the temporal
relationship of time series data covered by the insight. The reason is
that in time series data, data points are collected sequentially through
time [12] while in tabular data, each data point is relatively independent
of the other. Thus, our definition of an insight i from time series data is
as follows,

insight = {type,subspace,breakdown,measure︸ ︷︷ ︸
metadata

, raw value,derived value︸ ︷︷ ︸
value

} (3)

where type denotes insight types, including distribution, correlation,
trend, extreme, seasonality, outlier, similarity, and autocorrelation, as



identified in our preliminary study. Subspace indicates a specific time
range to be observed. Breakdown refers to time granularity by which
the data points in the subspace are aggregated. Measure specifies
the variable(s) covered by the insight. Raw value refers to the time
series data covered by the insight, which contains all the data points
within a time subsequence defined by specific subspace, breakdown,
and measure. Derived value denotes statistic and inferential values
calculated based on the raw value of the insight. It can be used to
describe the characteristics of a specific insight type such as the pos-
itive or negative slope of a trend. Using the definition, the example,
“daily changes in the number of new vaccination cases from April. 30,
2021 to June. 30, 2021”, can be modeled as {“trend”, {[2021-04-30,
2021-06-30]}, {day}, {vaccination cases}, {[2275501, 2959008, · · · ]},
{“extent”: “+0.7”}}.

4.3 Action Space

From the state sn, the agent selects an action an to discover a new
insight in+1, which constitutes the latest insight of the next state sn+1.
The action space A lists all the possible actions to explore new insights
from time series data. To formulate A, we referred to the metadata of
insight (Equation 3) and ignored its value, as the value is determined
by the data itself and cannot be altered by analysts through manipula-
tion. As metadata can be represented using a four-tuple, it is natural to
consider four ways to extend to new insights based on a specific insight.
The new insights differ from the current insight by one element of the
metadata, with each corresponding to a specific analysis behavior. The
benefits of defining such ‘one element at a time’ actions are two-fold:
(i) they serve as composable building blocks that enable full exploration
of all the possible insights included in the insight space I; and (ii) they
facilitate the decomposition of complex exploration operations and then
present them in a step-by-step manner. Accordingly, we identified four
extending types of actions, including EXT(type), EXT(subspace),
EXT(breakdown), and EXT(measure), on one insight to constitute
homogeneous insights. Note that when performing EXT(measure),
EXT(type) is also allowed. The reason is that when multiple vari-
ables are reduced to one variable, the original multivariate insight such
as ‘correlation’ can no longer be applicable, and vice versa. Thus,
EXT(measure) and EXT(type) should be executed simultaneously.

After identifying the four extending types, we attempted to find
specific actions corresponding to each type. First, we analyzed all the
insight wordi in the 80 EDA notebooks and represented each of them as
a four-tuple. Then, we compared the difference between the four-tuples
of every two consecutive wordi in a sequence sentencei. Next, we
mapped such a difference into one or a series of actions, corresponding
to a change in one or multiple extending types. Table 1 shows the
action space A. For example, “CA_2 shows a decrease in 2015 may
have resulted in CA_4 experiencing its highest sales of up to 3,000
in the same year" involves two actions, CHANGE_MEASURE and
CHANGE_TYPE; it first changes measure from ‘CA_2’ to ‘CA_4’
and then changes type from ‘trend’ to ‘extreme’.

4.4 Reward Function

After executing the action an to transfer to a new state and obtain a
new EVA sequence, the environment returns a reward calculated by the
reward function to inform the agent how well the EVA sequence is gen-
erated through an. Rewards for data exploration tasks can be designed
by balancing familiarity and curiosity, where familiarity emphasizes
the association between two consecutive states while curiosity encour-
ages the discovery of unknown states [44]. Similarly, in the context of
EVA, a high-quality EVA sequence can be evaluated if insights from
{i1, i2, · · · , in} are interrelated with each other (familiarity) while each
one also exhibits uniqueness (curiosity).

Familiarity. Familiarity rewards the agent when the interrelation-
ship between the insights in {i1, i2, · · · , in} at sn is well-maintained.
Inspired by the approach to constructing homogeneous data patterns
in EDA [42], we calculated familiarity RF by iterating through the
metadata of insights {i1, i2, · · · , in−1}, comparing each of them with
that of in, and counting the number of elements with the same value.

Type Action Description
EXT(type) CHANGE_TYPE Change the type of an insight.

EXT(subspace)

SHIFT_FORWARD Move the subspace of an insight forward
by a range equal to the current subspace.

SHIFT_BACKWARD Move the subspace of an insight back-
ward by a range equal to the current
subspace.

SHIFT_PERIODICAL Move the subspace of an insight to
the same time period in the previous
year/month/day/hour.

EXT(breakdown)

AGGREGATE Perform aggregation on the breakdown

of an insight.
REMOVE_AGGREGATE Remove aggregation on the breakdown

of an insight.

EXT(measure)

CHANGE_MEASURE Change the measure of an insight to an-
other variable.

INCREASE_MEASURE Increase the measure of an insight from
one variable to multiple variables.

DECREASE_MEASURE Decrease the measure of an insight from
multiple variables to one variable.

Table 1: The action space in our formulation.

RF =
1

4∗ (n−1)

n−1

∑
k=1

|mk ∩mn| (4)

where ∩ computes the subset of identical elements between the
metadata of the insight ik (mk) and that of the insight in (mn).

Curiosity. Curiosity motivates the agent to explore new states
and go further in its data exploration. It includes two terms rele-
vant to the raw value and derived value of insight, respectively. First,
the raw value term RCr evaluates the difference between time subse-
quences of corresponding insights, encouraging discovering new sub-
sets of data [5,44]. To do this, we employed the CasualCNN model [21],
which is capable of representing time subsequences of varying lengths
as embeddings of equal length. Then, the difference between two time
subsequences was computed based on the distance of their embeddings.

RCr =
1

n−1

n−1

∑
k=1

{1− cosine(en,ek)} (5)

where cosine(.) calculates the cosine similarity between the two em-
beddings ek and em.

Second, the derived value term RCd rewards the agent for finding
a unique insight. Such an insight tends to be more meaningful and
interesting [53]. To compare the uniqueness of insight, we computed
the statistical significance (e.g., p-value) based on the derived value
of each insight [19, 65]. The details of our methods can be found in
the Supplementary Material. The uniqueness of insight is used as its
derived value term RCd ,

RCd = score(ik) (6)

where score(.) evaluates the statistical significance of the insight ik.
Finally, we combined both familiarity (RF) and curiosity rewards

(RCr and RCd) by weighted sum as the final reward rn.

rn = w1RF +w2RCr +w3RCd (7)

where the weights were set as follows, w1 = 0.4, w2 = 0.4, w3 = 0.2.

5 DESIGN OF VISAIL

Based on the problem formulation, we designed Visail that supports
guided EVA on time series data. In the following, we first describe the
overview of the system pipeline of Visail, followed by the details of
each component.



5.1 System Pipeline
Based on the design requirements (DR1-DR4), the system pipeline was
designed to include three main modules: Segmentation, Generation,
and Representation.
P1 Segmentation. The segmentation module first partitions a given

time series into multiple time subsequences based on its characteris-
tics. Such time subsequences serve as the basic units for extracting
insights (DR1). The module then selects a specific time subse-
quence and extracts its corresponding insight to form an initial
EVA sequence as the starting point for the generation.

P2 Generation. The generation module generates an EVA sequence
based on the RL-based algorithm (DR2). It starts with the initial
EVA sequence. Then, at each following step, the module discovers
a meaningful insight through the action predicted by the RL agent
(DR1) and appends it to the sequence to form a coherent EVA path.
Such an insight-by-insight generation method also facilitates online
feedback responding to user interaction by suggesting an update
on the EVA sequence (DR4).

P3 Representation. The representation module displays the generated
EVA sequences through annotated visualizations along with tex-
tual descriptions specifically designed for effective communication
(DR3). Also, this module provides various interaction techniques to
aid in exploring time series data as well as adjusting the generated
results (DR3).

5.2 Segmentation
The segmentation module partitions a given time series by referring
to the approach of causal analysis regarding time series data [18]. If
the time series is periodic, then segmentation is conducted according
to its period; otherwise, segmentation is based on its peak. If the time
series is non-seasonal and lacks peaks, it is considered as a whole
as a segment (i.e., a time subsequence). After segmentation, the pro-
cess of EVA starts with selecting a specific time subsequence with a
meaningful insight as a starting point, which acts as the initial EVA
sequence. First, two methods were used for subsequence selection: one
is through user specification, and the other one is through time-bounded
search [19]. Regarding time-bounded search, in a given time budget,
the segmentation module samples a set of subsequences from the time
series and extracts all their insights. Then, the insight with the highest
statistical significance (as described in Sec. 4.4) is selected to constitute
the initial EVA sequence.

5.3 Generation
The generation module leverages RL to generate EVA sequences in an
insight-by-insight manner, where the coherence between consecutive
insights should be maintained. In this subsection, we first describe the
workflow of the RL-based algorithm, followed by the details of its key
components, including feature engineering and the RL agent. Then, we
demonstrate how the algorithm can be used for online recommendation.

Fig. 2: Overview of the RL-based algorithm in the generation module.

5.3.1 RL-based Algorithm
The RL-based algorithm is based on Proximal Policy Optimization
(PPO) [50]. We used PPO as it can strike a balance between per-
formance and ease of tuning hyperparameters, which is suitable for
data exploration tasks such as EVA. Fig. 2 shows the overview of the
algorithm. First, it represents a state sn as a vector through feature en-
gineering and then feeds the vector into the RL agent. Next, the agent
selects an action an from the action space A that is expected to maxi-
mize the reward. Specifically, the agent consists of two components:

Fig. 3: The network architecture of the agent, which consists of (1) the
LSTM-based encoder, (2) the actor, and (3) the critic. (4) illustrates the
mechanism of online recommendation based on the network.

the actor and critic. The core concept of the actor-critic mechanism
is to utilize the critic to evaluate the actor’s prediction and train the
actor so that actions yielding greater rewards are more likely to be
selected by the actor. Then, the environment conducts the action an
with the maximum probability on the state sn to transfer to the next state
sn+1. Finally, the generation module evaluates sn+1 through the reward
function R(.) to obtain the reward rn towards an. The reward rn, along
with action probabilities from the actor and expected return from the
critic, serve as the input for the loss function L(θ). The algorithm then
moves on to the next iteration, repeating the process until the generated
EVA sequence reaches the maximum length N.

5.3.2 Feature Engineering

To feed a state sn into the agent, we first represented it as a feature
vector through feature engineering. Considering sn includes insights
{i1, i2, · · · , in}, each of them can be represented as an insight vector.
Regarding its metadata, type, subspace, breakdown, and measure are
represented as vectors. To represent raw value in its value, we adopted
CasualCNN [21] to represent raw value using fixed-length embeddings
which capture the overall features of time series data as well as the time-
dependent relationship between data points. We ignored derived value
as it is calculated based on raw value and its information can also be
inferred through the vector of raw value. As a result, a state sn can be
represented as a matrix that packs n insight vectors. Assuming that
each insight vector has length l, then the feature vector vn of the state
sn can be represented as a matrix of n× l.

5.3.3 RL Agent

Given the feature vector vn of the state sn, the objective of the RL
agent is to select the most appropriate action to discover a new insight
for the subsequent state. Also, the new insight should be consistent
with the insights identified in previous steps. The agent consists of
two components (Fig. 3): (1) the actor that predicts the probability
of performing each action a ∈ A at the state sn, and (2) the critic that
predicts the maximum expected return which is the sum of expected
rewards when continuing to explore from sn to the final state sN .

First, the feature vector of state sn is fed into a shared LSTM-based
encoder, as shown in Fig. 3 (1). The LSTM-based encoder can model
the insights and their relationships in the state sn, through which the
agent gains a comprehensive awareness and thus selects an action
that maintains such relationship of all insights in the next state sn+1.
Specifically, we input n insight vectors of {i1, i2, · · · , in} at the state
sn into the encoder in order. The hidden state of the n-th insight is
used as the unified representation of sn. Such a hidden state includes
contextual information by preserving the features of all the insights at
sn and capturing the sequential information between the insights based
on the input order.

Then, the hidden state is fed into the actor and critic respectively, as
shown in Fig. 3 (2) and (3). The actor and critic have similar network



Fig. 4: The interface of Visail consists of five components, including (1) Timeline view, (2) Sequence view, (3) Insight panel, (4) Insight tooltip,
and (5) Suggestion Panel.

architecture, consisting of multiple fully-connected (FC) layers. Com-
pared with the critic, the actor has an additional output layer consisting
of two components, including semantic weight and mask, which ensure
the coherence of newly added insights from a semantic perspective.
The first component, semantic weight, is used to indicate the logical
validity of executing an action a j

n from a set of actions {a1
n,a

2
n, · · ·} ∈ A

at sn. The validity is reflected in the semantic relationship between
insights before and after executing a j

n. If this relationship is evident,
the probability of corresponding action a j

n should be increased. The
relationship between the two consecutive insights can be reflected in
their type and measure, which contain categorical information. Ac-
cordingly, two methods can be employed to determine the relationship:
one is using the co-occurrence relationships between types and the
other is through the association between variable names in measures.
Thus, the probability of co-occurrence relationships between two in-
sights (Fig. 1) and the similarity between the vectors of two variable
names are considered as the semantic weight of a j

n. The weight is then
multiplied with the output of the FC layers, followed by a so f tmax
activation to determine the probability p j of a j

n.
The second component of the actor, mask, is used to avoid selecting

actions that cannot be executed at the state sn. For example, if the
measure of the n-th insight in at the current state contains only one
variable, the action DECREASE_MEASURE should not be selected
for execution. Mask was selected as it performs better than other
methods in solving the problem of invalid actions, such as giving lower
rewards [29]. After obtaining the action probabilities {p1, p2, · · ·}, we
first determined whether the actions can be executed for the n-th insight
in and marked them as either valid or invalid. For an invalid action
ak

n, we set the k-th value in the mask vector to zero and multiplied the
action probability by the mask to exclude the invalid actions. Thus,
{p1, p2, · · ·} multiplied by the mask is the final output of the actor.

Finally, the agent outputs two items, the action probabilities com-
puted by the actor and the expected return computed by the critic.
Specifically, action probabilities are used to sample an action an, which
is executed by the environment to explore the next state sn+1, whose
feature vector vn+1 is then used as the input for the LSTM-based en-
coder in the next iteration. Regarding the training of the agent, the goal
is to make the cumulative reward ∑

N
i=n γ i−1ri obtained by an as close

to the optimal case as possible. Thus, we applied the loss function L(θ)
and utilized Stochastic Gradient Descent to optimize the parameters θ .

L(θ) = E[w · Ân], where Ân = rn + γ ˆGn+1 − Ĝn (8)

where w is a dynamic weight used to limit the range of the loss and pre-
vent excessively large updates to parameters θ , stabilizing the training
process. The calculation of w is based on the probabilities of actions
predicted by the actor [50]. Ân denotes the advantage function that
measures the quality of the action an. Ĝn and Ĝn+1 are the maximum
expected returns predicted by the critic based on sn and sn+1, respec-
tively. They evaluate the maximum cumulative reward that can be
obtained by generating a complete sequence after sn and sn+1. rn is the
reward obtained by the action an. Thus, the closer the value of Ân is to
zero, the more likely an is the optimal choice at sn.

5.3.4 Online Recommendation
The design of the RL-based algorithm is well-suited to incorporate user
feedback into the generation. As the algorithm automatically generates
an EVA sequence, it adds a new insight at each step by executing an
action with high probability. It can also generate alternative insights
through the actions with lower probabilities, providing real-time rec-
ommendations to users, as shown in Fig. 3 (4). A user can select
one of the alternatives to replace the current insight in with a new in-
sight i′n, changing the state of the generated EVA sequence from sn,
i.e., {i1, i2, · · · , in} to s′n, i.e., {i1, i2, · · · , i′n}. Then, the algorithm can
continuously generate the subsequent insights i′n+1, i

′
n+2, · · · , i′N based

on the updated state s′n, yielding a new EVA sequence for the user.

5.4 Representation
The representation module shows the generated EVA sequences using
a set of carefully designed visualizations and provides interaction to
facilitate exploration, along with accompanying textual descriptions.

5.4.1 Visualization and Textual Description
To support communicating the results generated by Visail, we repre-
sented each insight of an EVA sequence as an annotated chart along
with textual descriptions. To design annotated charts, we first con-
ducted a literature review on visualization design in terms of time series
data [9, 27, 32] and annotation [9, 46, 64]. We also investigated news
outlets famous for data journalism such as The New York Times and
The Economist as well as well-known Business Intelligence tools such
as Azure and Tableau to understand how visualization is designed for
the general public. The survey from both academia and industry al-
lows us to design annotated charts by following the design principles
of simplicity, aesthetics, consistency, and contrast [43]. For example,
Fig. 4 (5) shows an annotated chart depicting a similarity insight. The
design highlights the visual representation of similar time subsequences



by assigning distinctive hues, as described in the derived value of the
insight. When hovering over the chart, details are displayed.

Visail complements annotated charts with textual descriptions of
their content, as narrative can serve as a cognitive tool for situated
understanding [15, 47]. We used a template-based approach based on
the formation of insight and different insight types [53]. For example,
when describing a trend insight, its syntax is as follows, between
{{subspace}}, the {{measure}} is {{derived value}} over time. The
textual description of a trend insight, {“trend”, {[2021-04-30, 2021-6-
30]}, {day(Date)}, {vaccination cases}, {[2275501, 2959008, · · · ]},
{“extent”: “+0.7”}} is written as “between 2021-04-30 and 2021-6-30,
the daily vaccination cases increased 70% over time”.

5.4.2 User Interface and Interaction
The user interface of Visail consists of five main components (Fig. 4):
(1) Timeline view for visualizing raw time series data by variable; (2)
Sequence view for displaying the generated EVA sequences, where
each step is depicted as an annotated chart with a caption; (3) Insight
panel that supports editing the details of a selected insight; (4) the
tooltip for showing alternative insights of a selected time interval; and
(5) the Suggestion Panel recommends alternative insights for a specific
step in the EVA sequence.

As a user uploads a time series dataset to Visail, it is displayed in
the Timeline view. In this view, the user can explore the raw data
by scrolling through different variables and selecting a specific time
interval. The user can also manipulate the exploration parameters such
as the variables and the time range. Once the parameters are set, he or
she can click the “Start” button to check the result of an EVA sequence,
which is presented in the Sequence view. In the Sequence view, the
user can add, delete, or exchange insights. Specifically, an insight can
be edited in three different ways. First, the user can select one insight
to edit its metadata in the Insight panel, and then click the “Generate
Current” button to re-generate the current insight or click the “Generate
Subsequent” button to re-generate subsequent insights for a new EVA
sequence based on the modification. Second, the user can select one
insight to check alternative insights listed in the Suggestion Panel and
replace the current one. Third, the user can select one insight to check
the time interval being observed, which is highlighted in the Timeline
view. When the time interval is selected, all the insights related to it
will be extracted and displayed in the tooltip. Then, he or she can add
a new insight of interest to the EVA sequence. If the user is satisfied
with the results in the Sequence view, he or she can click the “Export”
button in the Timeline view to export.

6 EVALUATION

The evaluation of Visail includes an ablation study, a user study, and
two case studies. We first conducted an ablation study to evaluate the
performance of the core component of Visail (the generation module).
Then, we carried out a user study to compare the quality of EVA
sequences generated by Visail with that of EVA sequences created by
human experts. We further conducted two case studies to understand
how Visail is used by domain experts.

6.1 Ablation Study
The ablation study evaluates the performance of the generation module
through three comparative experiments focusing on the RL algorithm,
LSTM-based encoder, and mask, respectively. We designed a baseline
for each of the three experiments. All three baselines and Visail were
trained on global Covid-19 dataset (2021-02-04∼2022-12-22) [4] with
100,000 steps and a maximum step of five. Following the experiment
setting of the PPO algorithm [50], we trained the baselines and Vi-
sail 10 times and averaged their rewards, as shown in Fig. 5. The three
experiments were conducted on a workstation with Intel i7-10700k
CPU, a GeForce RTX 3060Ti GPU, and 32GB memory.

RL Algorithm versus Monte-Carlo Search Tree. Monte-Carlo
search tree can effectively explore the insight space and generate data
stories composed of insights [53]. Thus, it was designed as a baseline,
BaselinesearchTree, for comparing against the RL algorithm in the task
of generating EVA sequences. We constructed BaselinesearchTree using

the same action space and reward function as our RL algorithm and in-
put an identical initial insight i1. Given a time limit, BaselinesearchTree
explores the insight space and selects the EVA sequence with the high-
est reward from the search results as its output. Fig 5 shows that the
average reward obtained by BaselinesearchTree is lower than that of Vi-
sail. The results indicate that within the same time limit, Visail can
generate high-quality EVA sequences more efficiently when compared
to BaselinesearchTree.

LSTM-Encoder versus No Encoder To validate the effectiveness
of the LSTM-based encoder in capturing the features of multiple in-
sights as well as their sequential information, we designed a baseline,
Baselineno-encoder, where the encoder was removed from the RL agent.
In Baselineno-encoder, only the feature vector of the n-th insight in at
the current state is used as the input for the actor and the critic [5, 52].
As shown in Fig 5, the reward of Baselineno-encoder increased but even-
tually converged to a smaller value than Visail. The results suggested
that considering all the insights from the first step to the n-th step can
lead to EVA sequences of high quality.

Mask versus Invalid Penalty To evaluate the effect of using a
mask to avoid invalid actions, we used a penalty reward as a baseline,
Baselinepenalty. During the training of Baselinepenalty, the RL agent
will receive a negative reward if an invalid action is selected. Fig 5
shows that the reward of Baselinepenalty increases at first, but converged
to a smaller value than other methods, indicating that it is challenging
for the agent to learn to effectively balance the rewards given the quality
of the EVA sequence and the validness of the actions taken.

6.2 User Study
To evaluate the effectiveness of our algorithm in generating high-quality
EVA sequences, we conducted a within-subject user study.

6.2.1 Methodology
In the user study, we compared the quality of the EVA sequences that
were generated by the RL algorithm (SRL), those generated by the RL
algorithm without semantic weight (Sno-weight ), and those created by
human experts (Shuman). Specifically, Sno-weight was designed to inves-
tigate the impact of semantic weight on the quality of EVA sequences.
Previous work suggested that DL can generate insights at a professional
level of quality [17, 69]. Thus, an EVA sequence was rated in terms
of intra-insight (comprehensiveness), inter-insight (coherence), path
(effective path), and goal (helping develop a clear goal) qualities. We
form hypotheses as follows:

Fig. 5: Ablation study showing the mean returns of Visail and three
baselines across training steps.

Fig. 6: Means and standard errors of each measurement in Shuman, SRL,
and Sno-weight conditions (∗: p < .05, ∗∗: p < .01).



Fig. 7: Results of Case I (a)(b) and Case II (c)(d). Here, (a) and (c) display EVA sequences generated before user modification while (b) and (d)
show EVA sequences generated after user modification. Specific types of user modification are highlighted.

H1 SRL are perceived to be as effective, coherent, comprehensible, and
directive as Shuman.

H2 SRL are perceived to be significantly more effective, coherent, com-
prehensible, and directive than Sno-weight .

Data and Material In each of the three conditions, SRL, Shuman,
and Sno-weight , the dataset used the ablation study served as data input.
Regarding Shuman, we invited four data analysts with five or more years
of professional experience to manually create EVA sequences. They
used Visail without the generation module and were allowed to use any
tools they are familiar with, such as Grafana, to assist their exploration.
First, they identified an insight of interest as the starting point of an
EVA sequence using the Insight panel. Then, they continued their
exploration until the length of the EVA sequence reached six. This
process resulted in a total of eight EVA sequences from four experts. To
ensure a fair comparison, we used the eight initial insights selected by
the experts as the input to both SRL and Sno-weight to generate another
16 EVA sequences of the same length of six. Finally, Visail visualized
all 24 EVA sequences, which were divided into eight groups, with three
EVA sequences sharing the same initial insight included in each group.

Task and Procedure The study began with a 10-minute introduc-
tion explaining the goal of our study and the details of the datasets. The
study task required participants to read and rate the 24 EVA sequences.
Each participant was presented with two groups of EVA sequences, one
sequence at a time. The order of the EVA sequences was randomized
to avoid learning effects. Participants were asked to rate each EVA
sequence using a 5-point Likert scale and explain their ratings. The
study lasted about 20-25 minutes for each participant.

Participants We recruited 20 participants (11 females) aged be-
tween 22 and 45 (M = 26.3, SD = 5.0) for our user study, including col-
lege students, researchers, and professionals from diverse backgrounds
such as computer science, data science, and electronic engineering. All
the participants reported that they have experience in analyzing time
series and their expertise in visualization is as follows: novice: 5 (25%),
advanced beginner: 3 (15%), competent: 12 (60%).

6.2.2 Results and Analysis
To evaluate H1, we tested the following null hypothesis: H0: the condi-
tion (SRL or Shuman) has no effect on the four metrics. The Wilcoxon

signed-rank test showed that SRL earned similar scores with Shuman and
the differences were not significant (p = .88, .51, .30, .70, respectively)
(Fig. 6). Thus, the null hypothesis is accepted, providing support for
H1. To evaluate H2, we tested the following null hypothesis: H0: the
condition (SRL or Sno-weight ) has no effect on the four metrics. Similarly,
we compared SRL and Sno-weight through the Wilcoxon signed-rank test
and found that SRL performed significantly better than Sno-weight (p =
.019, .016, .018, .002, respectively) (Fig. 6). Thus, the null hypothesis
is rejected, providing support for H2. By analyzing the quantitative
feedback collected from the participants when explaining their ratings,
we found that they were positive about the quality of EVA sequences
generated by the RL algorithm. P11 noted, “it’s easy to understand,
it first describes the distribution of confirmed and vaccination cases,
then it highlights the outliers in the next insight.”. The participants
also suggested that the EVA sequence generated with semantic weight
constituted a coherent exploration path. “It tries to find if this outlier is
caused by this sudden increase in the trend of the vaccination” (P13).

6.3 Case Studies
To evaluate the usefulness of Visail, we conducted two case studies with
two domain experts, who were invited to use the system to conduct
visual analysis tasks on two new datasets, including physiological
measurements [63] and Bitbrains datacenter traces [61], respectively.
The expert (E1) for Case I is a rheumatologist from a hospital, with
more than ten years of clinical experience. The expert (E2) for Case II
is a data scientist from a cloud computing service team, with more than
five years of operation and maintenance experience.

6.3.1 Case I: Physiological Measurements
The first case study uses a physiological measurement dataset collected
when a subject performs exercises, such as heart rate and respiration
rate. An EVA sequence was generated by Visail for E1 (Fig. 7 (a)). It
first shows a significant increase in respiration rate between minutes 32
and 33 (step 1). Then, outliers in respiration rate, heart rate, and tidal
volume were detected (step 2) and E1 noted a strong positive correlation
between these measurements (step 3). She also observed that multiple
time subsequences in heart rate and tidal volume had similar increasing
trends as the time subsequence in respiration rate (step 4). Then, E1
found that the respiration rate had reached the maximum, 30 (step 5).
Finally, the EVA sequence showed the fluctuation in respiration rate



from minutes 31 to 32 when approached the maximum at 31:34 (step 6).
After gaining an overview of the dataset, E1 intended to focus on the
relationship between respiration rate and activity volume. To this end,
she added a similarity insight to the original EVA sequence (step 7), as
shown in Fig. 7 (b). The insight shows that a few time subsequences
of activity volume are similar to that of respiratory rate (minutes 32
-33). She noted that the increasing trend in these subsequences also
implied that the subject started exercising. Finally, by referring to
the recommendation list, E1 found that outliers also exist in the two
measurements and added this insight to the EVA sequence (step 8).

After analyzing the EVA sequence, E1 concluded that a correlation
exists between respiration rate, heart rate, and tidal volume, which
is consistent with medical knowledge. Also, E1 mentioned that the
time subsequence with an increasing trend in heart rate is followed
by a similar increase in tidal volume. The reason might be that the
increase in heart rate (oxygen consumption) leads to an increase in
tidal volume (oxygen inhalation). The longer the difference in time
between the two increases, the longer the body is located in hypoxia.
Thus, E1 proposed to analyze the time difference between the time
subsequences with increasing trends in tidal volume and heart rate,
combined with the rapid rise of measurements such as respiration and
heart rates, suggesting more effective exercise plans to subjects.

6.3.2 Case II: Bitbrains Datacenter Traces

The second case study uses a time series dataset (2013-08-12∼2013-08-
16) from Bitbrains, which involves the performance metrics of virtual
machines (VMs) such as disk read throughput and CPU usage. Vi-
sail first generated an EVA sequence, as shown in Fig. 7 (c). E2 first
noticed that the disk read throughput from 15:11 to 18:40 on 8.15 is
fluctuating and hypothesized that this is likely a normal periodic fluctua-
tion (step 1). He then moved his attention to the distribution of multiple
variables including disk read throughput, disk write throughput, and
network received rate (step 2), as well as the maximum values of disk
read throughput (step 3) and disk write throughput (step 4). He found
that these values all lie within the normal interval. Through further
investigation, E2 confirmed that these fluctuations occur periodically
throughout the time series (steps 5 and 6), which verified his hypoth-
esis. After exploration, E2 gained a brief understanding of the VM’s
performance in its normal state. Also, he observed a few outliers in
step 2 and noted that in step 5, the waveform of disk read throughout in
the previous time period deviated significantly from others.

To further investigate the outliers, E2 selected a new initial insight,
outlier, with the time range from 8.14 23:26 to 8.15 4:56 and with
measures of CPU usage, disk read throughput, and disk write through-
put. After that, he clicked the “Generate Subsequent” button. This
prompted Visail to generate a new EVA sequence (Fig. 7 (d)), which
focused more on showing the metrics in anomalies. The EVA sequence
shows outliers in steps 1 and 2. E2 then examined steps 3 to 6 and
found that the distribution and maximum values of the disk read and
write throughput were located in the abnormal interval. He hypoth-
esized that these outliers might be caused by external requests. To
validate his hypothesis, he selected three variables related to external
requests including memory usage, network received throughput, and
network transmitted throughput to conduct further analysis. He found
that all three variables were anomalous to varying degrees and added
this insight in step 7. Based on the analysis of the original and updated
EVA sequences, E2 concluded: the VM is running certain services
with low load under normal conditions. However, these services are
not independent timed tasks and are affected by external requests that
cause the VM to read and write data from/to the disk and use CPU
resources. These burst requests pose a performance challenge for the
VM. Thus, E2 proposed to investigate the logs when the anomalies
occurred to identify the cause of the burst requests and then optimize
the performance of the running services.

6.3.3 User Feedback

Both experts from the case studies, E1 and E2, provided perceptive
feedback regarding generation, visualization, and interaction.

Generation. Both E1 and E2 agreed that the original sequences
generated by Visail are reasonable and provide inspiration for data ex-
ploration and analysis. E1 mentioned: “it’s common to get an overview
followed by a detailed analysis. It follows such a path of analysis.
That’s quite impressive.” E2 thought Visail is about to mimic human
analysis behaviors, “it analyzes the association between variables by
their distribution after observing outliers, and finally compares the
differences of outliers in different variables.”

Visualization and Interaction. Both E1 and E2 acknowledged the
simplicity and expressiveness of the visualization design. They em-
phasized that the annotated charts of outlier, distribution, and extreme
are intuitive and clear to communicate insights. E1 pointed out that
“although the sequence is designed in the order of the analysis steps, I
prefer to arrows to indicate the analysis flow”. Regarding the textual
descriptions on each step of the sequence, E2 believed that the text
can help analysts to see more detailed information and play a role in
promoting and assisting analysis.

7 DISCUSSION

Design Requirements for Guided EVA Tools. We found that when
presented with the results generated by Visail, the participants occa-
sionally encounter questions regarding multivariate insights, such as
“beautiful visuals, cool interaction, but what does this mean?”. Thus, we
suggest that future guided EVA tools should increase the explainability
of visual analytic recommendations using data-driven storytelling [13].
First, after analyzing the data, the experts frequently desire a narra-
tive structure to organize the extracted insights, and further enhance
engagement, communicate ideas, or persuasion [33]. Second, we found
that the experts often wish to augment the interpretability of the EVA
sequences by adding animation [55, 72], interaction [54], or iconic rep-
resentation [56, 70]. For example, when comparing different ‘outliers’
in multiple EVA sequences, animation techniques such as glow and
swing [55] can be added to the insight.

Generalizability of Collaborative EVA with Deep Learning. We
observed that our Visail users mostly hold positive opinions toward
the results generated by DL. They appreciated that DL can “relieve the
workload of analysis” and “generate high-quality results”. We believe
that the learning-based approach can be further generalized to more
data types. For example, using such an approach can support quickly
generating EVA sequences for network data and telling data-driven
stories in the form of chart sequences [39]. Also, Visail generates
EVA sequences partially depending on the initial coding of the 80 EDA
notebooks. Although such an approach can ensure the quality of the
results, it limits insight types and corresponding relationships to time
series data. In our future work, Large Language Models can be used to
learn from human behaviors in the data exploration process to enable
conversational interaction with data.

Limitations. We also observed several limitations in this work. First,
both familiarity and curiosity in the reward function consider the impact
of different attributes (e.g., type and measure, insight types) being the
same. Our future work plans to conduct a series of user studies to
investigate how analysts decide the weights when performing different
visual analysis tasks. Second, the scale of a dataset can impact the
results generated by the RL-based algorithm; when a dataset contains
millions of time series, the resulting EVA sequence of limited length
may not cover a large time range of data and thus miss certain insights.

8 CONCLUSION

In this work, we present Visail, an RL-based system that generates EVA
sequences to guide the exploration of time series data. Visail presents
each step of an EVA sequence as a data insight with an annotated
chart and textual descriptions. Visail also allows users to modify a
certain step and then updates the sequence accordingly. The results of
our evaluation suggested that Visail is able to generate effective EVA
sequences in terms of effective path, coherence, comprehensiveness,
and goal development. Also, Visail is useful and easy to use for users
who lack visual analytic expertise. Future work includes developing
guided EVA tools for data-driven storytelling and deploying Visail in
real data exploration work.
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