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ABSTRACT
Many real-world applications involve data frommultiple modalities

and thus exhibit the view heterogeneity. For example, user modeling

on social media might leverage both the topology of the underlying

social network and the content of the users’ posts; in the medical

domain, multiple views could be X-ray images taken at different

poses. To date, various techniques have been proposed to achieve

promising results, such as canonical correlation analysis based

methods, etc. In the meanwhile, it is critical for decision-makers to

be able to understand the prediction results from these methods. For

example, given the diagnostic result that a model provided based

on the X-ray images of a patient at different poses, the doctor needs

to know why the model made such a prediction. However, state-

of-the-art techniques usually suffer from the inability to utilize

the complementary information of each view and to explain the

predictions in an interpretable manner.

To address these issues, in this paper, we propose a deep co-

attention network for multi-view subspace learning, which aims

to extract both the common information and the complementary

information in an adversarial setting and provide robust interpreta-

tions behind the prediction to the end-users via the co-attention

mechanism. In particular, it uses a novel cross reconstruction loss

and leverages the label information to guide the construction of the

latent representation by incorporating the classifier into our model.

This improves the quality of latent representation and accelerates

the convergence speed. Finally, we develop an efficient iterative

algorithm to find the optimal encoders and discriminator, which

are evaluated extensively on synthetic and real-world data sets. We

also conduct a case study to demonstrate how the proposed method

robustly interprets the predictions on an image data set.
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1 INTRODUCTION
In many real-world applications, data are usually collected from

multiple sources or modalities, exhibiting the view heterogene-

ity. For example, many images posted on Facebook or Twitter are

usually surrounded by the text descriptions, both of which can be

considered as two distinct views; in the face attribute classification

problem, the data consist of different poses of the same person,

and each pose can be considered as a single view with comple-

mentary information to each other; in stock price forecasting, the

related factors include not only historical stock prices and financial

statements from companies, but also news, weather, etc.

Up to now, many researchers have proposed various techniques

to model the view heterogeneity based on different assumptions.

Some works assume that there exists a latent lower-dimensional

subspace shared by multiple views, and these views can be re-

constructed from this subspace. However, these state-of-the-art

methods usually suffer from the inability to utilize the complemen-

tary information of each view and the label information to enhance

the quality of the representation. For example, canonical corre-

lation analysis (CCA) [13], kernel canonical correlation analysis

(KCCA) [29], deep canonical correlation auto-encoder (DCCAE)[35]

aim to explore the linear/non-linear transformation of multi-view

features by maximizing the correlation coefficient of the two views.

However, in addition to not utilizing the label information, the

major drawback of [13, 29, 33, 35] is that they ignore the comple-

mentary information in the data since the CCA based methods

target to extract the common information that is mostly correlated

between views, which might result in a sub-optimal solution.

Recent years have witnessed the tremendous efforts devoted to

developing interpretable learning algorithms [9, 15, 22, 25, 27, 47].

Understanding the reasons behind the prediction is of key impor-

tance for those who plan to take action based on the prediction.

For example, in the medical domain, a doctor expects to know why

the model made a prediction of a potential disease given the X-ray

images of a patient taken at different poses; in the financial domain,

when investors utilize a model to predict the trend of the stock price,

they expect to see the reasons behind the prediction so that they

could analyze a large number of assets to form a diversified portfo-

lio and mitigate risks in a reasonable way. However, in multi-view

learning, most existing techniques ignore the interpretability of

the predictive model. Although we could simply apply the existing

explanation methods on the concatenated multi-view features to

interpret the result, it may suffer from the noisy features by acci-

dentally including such features for interpretation. On the other

hand, utilizing the consensus information of multi-view data could

potentially help us build a more robust interpretable model against

the noisy features.

1528

https://doi.org/10.1145/3442381.3449801
https://doi.org/10.1145/3442381.3449801
https://doi.org/10.1145/3442381.3449801


WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Lecheng Zheng and Yu Cheng, et al.

Motivated by these limitations, we propose a deep adversarial

co-attention model for multi-view subspace learning named ANTS,
extracting both the shared information and the view-specific infor-

mation in an adversarial manner and providing the robust interpre-

tation behind the prediction to the end-users. Within this model,

the co-attention encoder module is designed to extract the com-

mon information shared by multiple views with the help of a view

discriminator, and interpret the predictive results by weighing the

importance of the input features; the decoder module is designed to

project the common information back to the original input space;

the view discriminator is included to regularize the generation qual-

ity of the shared representation. After reconstructing themulti-view

features based on the shared representation, we use the residual

between the original input features and the reconstructed features

as the view-specific information or the complementary information.

We integrate both the common information and complementary

information to yield richer and more discriminative feature repre-

sentation. Our main contributions are summarized below:

• A novel deep model for multi-view subspace learning, which

extracts both the common information and the complemen-

tary information, and provides a robust model explanation

for each view via co-attention module.

• Novel cross reconstruction loss and the use of label informa-

tion to guide the construction of the latent representation.

• A case study that show how the proposed method interprets

the predictions on an image data set.

• Experimental results on synthetic and real-world data sets,

which demonstrate the effectiveness of the proposed model.

The rest of this paper is organized as follows. After a brief review

of the related work in Section 2, we introduce our proposed model

for deep multi-view subspace learning in Section 3. The systematic

evaluation of the proposed method on synthetic and real-world

data sets is presented in Section 4. In Section 5, we conduct a case

study to show how the proposed method interprets the prediction

on an image data set before we conclude the paper in Section 6.

2 RELATEDWORK
In this section, we briefly review the related work on multi-view

learning, interpretable Learning, adversarial learning, and cycle-

consistency.

2.1 Multi-view Learning and Interpretable
Learning

Learning multi-view data has been studied for decades. In multi-

view learning, researchers aim to model the similarity and differ-

ence among multiple views [38, 42, 44, 50, 51]. The existing algo-

rithms can be classified into three categories: 1) co-training based

methods, 2) multiple kernel learning, and 3) subspace learning. Co-

training [2] is one of the earliest methods proposed for multi-view

learning, which aims to find the maximal consistency of several

independent views given only a few labeled examples and many

unlabeled ones. Since then, many variants of co-training have been

proposed to find the consistency among views. For example, [39]

proposed an undirected graphical model for co-training to mini-

mize the disagreement among multi-view classifiers. In multiple

kernel learning, [5] proposed a two-view Support Vector Machine

method (SVM-2K) to find multiple kernels to maximize the correla-

tion of the two views; [28] proposed a co-regularization method to

jointly regularize two Reproducing Kernel Hilbert Spaces associ-

ated with the two views; [1] proposed Deep Canonical Correlation

Analysis to find two deep networks such that the output layers of

the two networks are maximally correlated. As for the subspace

learning, the authors of [14] proposed a deep multi-view robust

representation learning algorithm based on auto-encoder to learn a

shared representation from multi-view observations;[11] proposed

online Bayesian subspace multi-view learning by modeling the vari-

ational approximate posterior inferred from the past samples; [51]

proposed M2VW for multi-view multi-worker learning problem

by leveraging the structural information between multiple views

and multiple workers; [30] proposed CR-GAN method to learn a

complete representation for multi-view generations in the adver-

sarial setting by the collaboration of two learning pathways in a

parameter-sharing manner. Different from [30, 41, 43, 52, 53], in

this paper, we focus on multi-view classification problem and aim to

extract both the shared information and the view-specific informa-

tion in the adversarial setting, and the view consistency constraint

with label information is utilized to further regularize the generated

representation in order to improve the predictive performance.

Recently, more and more studies on model explanation [9, 15, 22,

25, 27, 47] reveal a surge of research interest in the model interpre-

tation. [25] is one of the earliest works in the model interpretation,

which proposes the LIME algorithm to explain the predictions of

any model in an interpretable manner. In [15], the authors propose

a black-box explanation algorithm to interpret how a training ex-

ample influences the parameters of a model; in [47], the authors

propose a domain adaptive attention network to explore the relat-

edness of multiple tasks and leverage consistency of multi-modality

financial data to predict stock price. In this paper, we leverage the

co-attention mechanism to interpret the prediction by weighting

the importance of the input features.

2.2 Adversarial Learning and Cycle
Consistency

Adversarial learning is a technique attempting to foolmodels through

malicious input, which is a promising way to train robust deep net-

works, and can generate complex samples across diverse domains

[8, 17, 23, 45, 46, 54]. The generative adversarial networks (GANs)

[8] is an effective approach to estimate intractable probabilities,

learned by playing a min-max game between generator and dis-

criminator. [23] applied both reconstruction error and adversarial

training criteria to a traditional auto-encoder. The MMD-GAN

work [17] introduced the adversarial kernel learning technique

for the discriminator loss. Recently, some adversarial learning ap-

proaches [4, 6, 18, 31, 40] have been proposed to minimize the dis-

tance between feature distributions. The domain-adaption works

in [6, 31, 40] tried to learn a domain-invariant representation in ad-

versarial settings. In [4], the adversarially learned inference model

aimed to find the shared latent representations of both views. [18]

proposed an adversarial multi-task learning framework to separate

the shared and private features of multiple tasks. Different from

these methods solely focusing on aligning the global marginal dis-

tribution by fooling a domain discriminator, we explore to further
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align the learned representation by considering the label informa-

tion. On the other hand, the cycle-consistency or the idea of using

transitivity to regularize structured data has been applied in many

applications, including image matching [49], co-segmentation [32],

style transfer [55], etc. In [7, 48], the cycle consistency constraint

is utilized as a regularizer to push the mappings to be as consistent

with each other as possible in the supervised convolution neural net-

work training. In [55], the authors proposed the Cycle-Consistent

generative adversarial network (Cycle-GAN) to learn two map-

pings or generators and two discriminators by using transitivity

to supervise CNN training. Different from Cycle-GAN [55], our

paper mainly focuses on finding a latent representation shared by

multiple views by leveraging the label information and extending

the cycle consistency idea, rather than transforming data from one

domain to another domain.

3 PROPOSED ANTS FRAMEWORK
In this section, we present our proposed ANTS, a deep co-attention

multi-view subspace learning framework. We start by introducing

the major notation used in this paper and then discuss the extrac-

tion of both the shared latent information and the view-specific

information, as well as how to leverage the label information and

incorporate the classification model. Notice that in the subsequent

discussion, for the sake of exposition, we focus on multi-view learn-

ing with two views. The extension of the proposed techniques

to the more generic settings with multiple views is discussed in

Subsection 3.4.

3.1 Notation
Throughout this paper, we use lower-case letters for scalars (e.g.,

γ ), a bold lower-case letter for a sample (e.g., x j ), and a bold upper-

case letter for a matrix (e.g., X ). We use D = (X1, . . . ,Xv ,Y ) to
denote a data set, where Xi ∈ R

n×li
is the feature for the ith view,

Y ∈ Rn×c is the binary label matrix, n is the number of samples,

li is the dimension of the input feature, v is the number of views

which is set to be 2 if not specified, and c is the number of classes.

For a single sample Xi (j, :) ∈ Rli , if it is image data, we could

apply image partition algorithm, e. g., Mask R-CNN [12], to split

this image into multiple segments; if it is text data, we could use

Word2vec [24] to extract the input feature. Following this idea, we

could reshape the dimension of a sample, e. g., x
j
i ∈ Rdi×ki , where

ki × di = li , x
j
i = {x

j
i,1;x

j
i,2; ...;x

j
i,ki

} and x
j
i,ki

∈ Rdi . For image

data, ki is the number of image segments and di is the dimension of

the representation of each segment (for text data, ki is the number

of words and di is the dimension of word embedding). We denote

Gi (·) and Fi (·) as an encoder-decoder pair for the ith view, one for

projecting the data point to the shared subspace and another for

transferring the projection back to the original data point. We also

denote D(·) as the discriminator, C(·) as the classifier and Pдi (Xi )

as a prior on the ith view. Given a sample x j , we denote z ∈ Rh

as the shared representation generated by encoders, x̂ ji ∈ Rdi×ki

as the ith the recovered view generated by Fi (·), zj ∈ Rh as the

representation generated from a sample x
j
i by Gi (·), where h is

the dimension of the hidden representation. Note that Ŷ ∈ Rn×c

Figure 1: Given an example with two views x1 and x2, we
use two encoders G1(·) and G2(·) to generate the shared la-
tent representation z. The goal of the discriminatorD(·) is to
determinewhether the shared latent representation z is gen-
erated by the first view (True) or the second view (False). To
constrain the generated representation, two decoders F1(·)
and F2(·) are utilized to transform the shared representation
(either z1 or z2) back to two recovered views x̂1 and x̂2, andwe
want the recovered views to be as similar to the real views as
possible. Meanwhile, we extract the view-specific informa-
tion s1 and s2 by simply subtracting x̂1 from x1 and subtract-
ing x̂2 fromx2, respectively. After extracting both the shared
information and the view-specific information, we concate-
nate them in a hidden layer and feed them into a classifier
C(·). Finally, label informationY is utilized to enforce the en-
coders to create better representations in order to improve
the predictive performance of the classifier.

is the prediction made by the classifier C(·) for labeled data, and

Ŷi ∈ R
n×c

is the prediction of the ith view for unlabeled data.

3.2 Objective Function
Now, we are ready to introduce the overall objective function:

min

G1,G2,F1,F2,C
max

D
L = L0(G1,G2,D) + αLv (G1,G2, F1, F2)

+ βLc (C,G1,G2, F1, F2)
(1)

where α and β are two positive constants that balance the three

terms in the objective function: L0 is the objective function of the

min-max game, Lv is the cross reconstruction loss to regularize the

generation of the representation and Lc is the cross-entropy loss

by leveraging the label information. Figure 1 provides an overview

of the proposed framework. Next, we elaborate on each module

respectively.

3.2.1 Co-attention Encoder Module. The main idea of co-attention

encoder is to explore the correlation of each pair of features in two

views in order to select the most important features by weighing the

importance of the input features via co-attention mechanism [19,

21]. Please refer to Figure 2 for the network structure of the co-

attention encoder module. Suppose we are given a sample x j with

two views, the affinity matrixC
j
1,2 ∈ Rk1×k2 of these two views is
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Figure 2: Co-attention encoder module, whereQ1,Q2, E1 and
E2 are neural networks, and σ is the non-linear transforma-
tion function, e. g., tanh or softmax.

computed by:

M
j
1 = Q1(x

j
1), M

j
2 = Q2(x

j
2)

C
j
1,2 = tanh ((M j

1)
TW1,2M

j
2)

(2)

where tanh(x) = ex−e−x
ex+e−x , M1 ∈ Rd1×k1 ,M2 ∈ Rd2×k2 are two

hidden representations mapped by two neural networks (Q
1
and

Q
2
) andW1,2 ∈ Rd1×d2 is a weight matrix shared by all samples.

Basically, this affinity matrix measures the similarities between the

segments among two views. By leveraging such an affinity matrix

of two views, we aim to encode the information from both views

in the hidden representation H1 and H2 that could be formulated

as follows:

H
j
1
= tanh (W1M

j
1 + (W2M

j
2)(C

j
1,2)

T )

H
j
2
= tanh (W2M

j
2 + (W1M

j
1)C

j
1,2)

(3)

whereW1 ∈ Rd3×d1 andW2 ∈ Rd3×d2 are weight matrices and d3
is the output dimension. By encoding the information from both

views into two hidden representationsH
j
1
andH

j
2
, we aim to capture

the consensus information of two views so that we could build a

more robust interpretable model to mitigate the negative impact of

noisy features. The importance of the input features is measured

as follows:

a
j
1 = softmax (wh1H

j
1 ), a

j
2 = softmax (wh2H

j
2 ) (4)

where wh1 ∈ Rd3 and wh2 ∈ Rd3 are weight vectors. Based on

the above attention weight vectors a
j
1 ∈ Rk1 and a

j
2 ∈ Rk2 , the

extracted representation for the first view and the second view can

be calculated by:

z
j
1 = E1(

k1∑
l=1

a
j
1,lM

j
1,l ), z

j
2 = E2(

k2∑
l=1

a
j
2,lM

j
2,l )

(5)

where E1(·) and E2(·) are two neural networks that map two views

to a latent space denoted as z. Here, we denote the entire structure
of the co-attentionmodule asG1(·) andG2(·) for the first and second

view, respectively (e. g.., zi = Gi (xi )). In the next subsection, we

introduce the discriminator module to help encoders extract the

common representation shared by two views.

3.2.2 Discriminator Module for Extraction of Shared Representation.
The discriminator module aims to help the encoder module find the

latent representation shared by two views, which will be utilized

for training a high-quality classifier. To learn the distribution of the

two encoders Pд1 and Pд2 over the shared latent space z, we define
Pд1 (X1) to be a prior on the first view X1 and Pд2 (X2) to be a prior

on the second view X2. Thus, z ∼ Pд1 (X1) is produced by the first

data encoderG1(·) fed with view X1; at the same time, z ∼ Pд2 (X2)
is produced by the second data encoder G2(·) fed with view X2.
Let D(·) be the discriminator that distinguishes whether the shared

latent representation z is generated by the first encoderG1(x1) or
by the second encoderG2(x2). The goal of the discriminator D(·)
is to maximize the probability of assigning the correct labels to

the representation generated by both encoders, e.g., assigning true

to the representation generated by the first view and false to the

representation generated by the second view. Two encoders aim to

minimize the probability that the discriminator D(·) successfully
distinguishes the representation generated from the first view or

the second view. Thus, the min-max objective function can be

formulated by:

min

G1,G2

max

D
L0 = Ex1∼p(X1)[log(D(G1(x1)))]

+ Ex2∼p(X2)[log(1 − D(G2(x2)))]

= Ez∼Pд
1
(X1)[log(D(z))]

+ Ez∼Pд
2
(X2)[log(1 − D(z))]

(6)

In this min-max game, two encodersG1(·) andG2(·) aim to generate

the same latent representation z shared by both views so that the

discriminator D(·) cannot reliably decide which encoder creates

such a latent representation.

Proposition 1. For the fixed encoders G1 and G2, the optimal
discriminator D∗(z) of Equation 1 is given by D∗(z) =

Pд
1

Pд
1
+Pд

2

.

Proof. Given the fixed encoderG1 andG2, the training criterion

for the discriminators is to maximize

L0 =
∫
z Pд1 log(D(z))dz +

∫
z Pд2 log(1 − D(z))dz

L0 =
∫
z [Pд1 log(D(z)) + Pд2 log(1 − D(z))]dz

For any (a,b) ∈ R2 \(0, 0), the function f (c) = a log(c)+b(log(1−c))

achieves its maximum at c = a
a+b . Thus, D

∗(z) =
Pд

1

Pд
1
+Pд

2

. □

3.2.3 Decoder Module for Extraction of View-specific Representa-
tion. In this subsection, we propose to reconstruct the views based

on the extracted shared representation to enforce the shared repre-

sentation to be robust and only contain the common information.

Besides, subtracting the reconstructed data from the original input

features leaves us with the information specific to each view, which

could be utilized to further boost the predictive performance. To re-

construct the views, we exploit the idea of transitivity to regularize

structured data used in [55] in order to restrict the distribution of the

representation. Our main intuition is that we could find the latent

representation shared by the two views in a low-dimensional space

and reconstruct these two views from this shared representation

generated by either view. In other words, since the representation

z is shared by two views, if we use the encoder G2(x2) to generate

the shared representation z, the decoder F1(z) should be able to

transform the representation z back to the first view x1. Similarly,
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the decoder F2(z) should also be able to transform the representa-

tion z generated by the encoder G1(x1) back to the second view

x2. Therefore, we let x̂i = γ1x̂(i,1) + γ2x̂(i,2), where γ1 + γ2 = 1,

x̂(i, j) means the reconstruction of the ith view from the jth view,

and γ1,γ2 ∈ [0, 1] are positive learnable parameters that balance

between the two reconstructed views. In this way, the loss function

can be updated as follows:

Lv = Ex1∼p(X1) γ1∥x1 − x̂1∥
2

2
+ Ex2∼p(X2) γ2∥x2 − x̂2∥

2

2

= Ex1∼p(X1) γ1∥γ1x1 + γ2x1 − γ1x̂(1,1) − γ2x̂(1,2)∥
2

2

+ Ex2∼p(X2) γ2∥γ1x2 + γ2x2 − γ2x̂(2,2) − γ1x̂(2,1)∥
2

2

= E(x1,x2)∼p(X1,X2) γ1∥γ1(x1 − x̂(1,1)) + γ2(x1 − x̂(1,2))∥
2

2

+ E(x1,x2)∼p(X1,X2) γ2∥γ2(x2 − x̂(2,2)) + γ1(x2 − x̂(2,1))∥
2

2

≤ 2E(x1,x2)∼p(X1,X2)[γ
3

1
∥x1 − x̂(1,1)∥

2

2
+ γ 3

2
∥x2 − x̂(2,2)∥

2

2

+ γ1γ
2

2
∥x1 − x̂(1,2)∥

2

2
+ γ2γ

2

1
∥x2 − x̂(2,1)∥

2

2
]

where the last inequality is based on ∥a + b∥2
2
≤ 2∥a∥2

2
+ 2∥b∥2

2
,

∀a,b ∈ R. Based on the above analysis, we define the view recon-

struction loss Lv in the overall objective function as follows:

Lv = E(x1,x2)∼p(X1,X2)[γ
3

1
∥x1 − x̂(1,1)∥

2

2
+ γ 3

2
∥x2 − x̂(2,2)∥

2

2

+ γ1γ
2

2
∥x1 − x̂(1,2)∥

2

2
+ γ2γ

2

1
∥x2 − x̂(2,1)∥

2

2
] (7)

One advantage of this constraint is that it enforces the representa-

tions z1 and z2 generated by two encoders G1(·) and G2(·) to be as

similar as possible in order to minimize the reconstruction error,

which helps the encoders to find the shared representation at a

faster pace. After extracting the common information shared by

multiple views, we also want to extract the view-specific repre-

sentation to further boost the predictive performance because the

view-specific information contains complementary features for the

sake of classification. For each sample xi , the view-specific infor-

mation si for the i
th

view could be easily extracted by subtracting

the constructed view from the original view, written as follows:

si = xi − x̂i = xi − γ1x̂(i,1) − γ2x̂(i,2) (8)

To leverage both the shared and complementary information from

all the views for the downstream classification task, we propose to

concatenate both common information and complementary infor-

mation from all views to make final prediction.

3.2.4 Classification Module for Incorporating Label Information.
With both the shared information and the view-specific information,

we propose to incorporate the classifier in our model to enhance the

quality of the concatenated representation. As mentioned earlier,

one drawback of CCA based methods is that they only capture the

information learned from the features but ignore the useful infor-

mation from the labels. Nevertheless, the label information can

be used to significantly improve the model performance, because

the examples with different labels tend to have different features,

and utilizing the label information may result in better representa-

tion for classification purposes. In our setting, we denote C(·) as a
multi-layer neural network or a classifier that takes both the shared

representation and the view-specific information as the input and

outputs the prediction results. We denote Y as the ground truth

label and Ŷ = C(zs ⊕ s1 ⊕ s2) as the label predicted by the classifier,

Algorithm 1 ANTS Algorithm

Input: The total number of iterationsT , two viewsX1 andX2, and
the label Y , parameters t1, t2, t3, α , β .

Output: The well-trained classifier C .
Randomly initialize the weights of the neural network.

for t = 1 to T do
Step 1: Update the discriminator D for t1 times via stochastic

gradient ascent by fixing the rest variables.

D ∼ ∇Ex1,x2∼p(X1,X2)[log(D(G1(x1))) + log(1 − D(G2(x2)))]
Step 2: Update G1, G2, F1 and F2 for t2 times via stochastic

gradient descent by fixing the rest variables.

G1 ∼ ∇Ex1,x2∼p(X1,X2)[logD(G1(x1)) + β ∥Y − Ŷ ∥2
2

+αγ2γ
2

1
∥x2 − F2(G1(x1))∥2

2
+ αγ 3

1
∥x1 − F1(G1(x1))∥2

2
]

G2 ∼ ∇Ex1,x2∼p(X1,X2)[log(1 − D(G2(x2))) + β ∥Y − Ŷ ∥2
2

+αγ1γ
2

2
∥x1 − F1(G2(x2))∥2

2
+ αγ 3

2
∥x2 − F2(G2(x2))∥2

2
]

F1 ∼ ∇Ex1,x2∼p(X1,X2)[αγ1γ
2

2
∥x1 −F1(G2(x2))∥2

2
+ β ∥Y − Ŷ ∥2

2

+αγ 3
1
∥x1 − F1(G1(x1))∥2

2
]

F2 ∼ ∇Ex1,x2∼p(X1,X2)[αγ
3

2
∥x2 − F2(G2(x2))∥2

2
+ β ∥Y − Ŷ ∥2

2

+αγ2γ
2

1
∥x2 − F2(G1(x1))∥2

2
]

Step 3: Update the classifier C for t3 times via stochastic

gradient descent by fixing the rest variables.

C ∼ ∇Ex1,x2∼p(X1,X2) ∥Y −C(zs ⊕ S1 ⊕ S2)∥
2

2

end for

where ⊕ is concatenation operator and zs = (z1 + z2)/2. Here we
aim to minimize the following loss function:

Lc = E(x1,x2)∼p(X1,X2) H(Y , Ŷ ) (9)

where H(Y , Ŷ ) is the cross-entropy loss. One goal of the incorpo-

rated classifier is to help the two encoders G1(·) and G2(·) find a

better representation by leveraging the label information. Notice

that according to Eq. 5, with the help of the incorporated classifier,

ANTS tends to assign a small weight to noisy or irrelevant features

but a large weight to important features to minimize the prediction

loss. This could further help us get a robust interpretable model and

alleviate the negative influence of the noisy features. Meanwhile,

when the final shared representation is determined, the classifier is

also well-trained and ready for the prediction, which saves the time

for training the classifier after finding the shared representation.

In addition, it is straightforward to extend the model to include

unlabeled data. Similar to the idea of co-training [2], these two

predicted labels for unlabeled data should be consistent with each

other. Thus, the loss function can be revised as follows:

Lc = E(x1,x2)∼p(X1,X2) H(Ŷ1, Ŷ2) + H(Y , Ŷ1) + H(Y , Ŷ2) (10)

where Ŷ1 = C1(z1 ⊕ s1), Ŷ2 = C2(z2 ⊕ s2) are the predictions of the
first view and the second view for unlabeled data, respectively and

C1(·) andC2(·) are multi-layer neural network that take the concate-

nation of both view-specific information and shared representation

as the input, and output the prediction results. The first term aims

to minimize the inconsistency between two predicted labels for

unlabeled data, and the remaining terms are the cross-entropy loss

on the labeled data for the two views respectively.
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3.3 Proposed Algorithm
We propose to solve the overall objective function via the stochastic

block coordinate gradient descent method. Our algorithm is pre-

sented in Algorithm 1. It takes as input a data set with two views

and the label information, the total number of iterations, as well

as several parameters, and outputs the well-trained model. The

algorithm works as follows. In Step 1, we first update the discrimi-

nator for t1 times by fixing the other variables and performing a

stochastic gradient ascent. Then in Step 2, we only update the two

encoders and the two decoders for t2 times via stochastic gradi-

ent descent, as discussed in the previous subsection regarding the

optimal encoders and decoders. Finally, in Step 3, we update the

classifier for t3 times via stochastic gradient descent.

3.4 Extension to Multiple Views
In this subsection, we extend our proposed techniques to more

generic settings with multiple views. For each pair of views x
j
i

and x
j
k , we could compute its affinity matrix C

j
i,k and the hidden

representation Hi as follows:

C
j
i,k
= tanh ((M

j
i )
TWi,kM

j
k
)

H
j
i = tanh (WiM

j
i +

v∑
k,i

(WkM
j
k
)(C j

i,k
)T )

(11)

whereWi,k ∈ Rdi×dj ,Wi ∈ Rd×di andWk ∈ Rd×dk are weight

matrices, and d is the output dimension. Using the one vs. all strat-

egy [26], we propose Centroid-ANTS framework for the scenario

with multiple views, where we consider the first view as the cen-

troid view (assuming we have the prior knowledge that the first

view is the most important view). With this setting, we want the

discriminator D(·) to distinguish whether the representation is gen-

erated by the first view X1 or not, instead of determining whether

the representation is generated by the first view or the second view.

Thus, the min-max objective function could be adjusted as follows:

L
(v)
0
= Ex∼p(X1) log(D(G1(x1)))

+
1

v − 1

v∑
i=2
Ex∼p(Xi ) log(1 − D(Gi (xi )))

(12)

The goal of the discriminator D(·) is to maximize the probability

of labeling true to the representation generated by the first view

and labeling false to the representation generated by the other

views. This enforces the representation generated by the other

views to be as similar to the representation generated by the first

view as possible. Similar to the cross reconstruction loss introduced

in the previous subsection, we expect that for each view other than

the first view, the decoder Fi (·) can transform the representation

generated by the ith view back to the first view. In addition, we also

expect that Fi (·) be able to transform the representation back to

the ith view. Thus, the loss function could be modified as follows:

L
(v)
v = Ex1∼p(X1) ∥x1 − x̂1∥2 + Ex2∼p(X2) ∥x2 − x̂2∥2

+ . . . Exv∼p(Xv ) ∥xv − x̂v ∥2

=
1

v

v∑
i=1
E(x1,xi )∼p(X1,Xi ) ∥x1 − F1(Gi (xi ))∥2

+
1

v

v∑
i=1
Exi∼p(xi ) ∥xi − Fi (Gi (xi ))∥2

(13)

where the first summation is the loss of transforming the repre-

sentation generated from the other views back to the first view,

and the second term is the reconstruction error of transforming

the representation back to its original view. To leverage the label

information, we propose to update the cross-entropy loss as follows:

L
(v)
c = E(x1 ...xv )∼p(X1 ...Xv )H(Y , Ŷ ) (14)

where Ŷ = C(zs ⊕ s1 ⊕ s2 ⊕ ... ⊕ sv ) and zs =
1

v
∑v
i=1 zi .

4 EXPERIMENTAL RESULTS
In this section, we demonstrate the performance of our proposed

algorithm ANTS in terms of the effectiveness by comparing it with

state-of-the-art methods.

4.1 Experiment Setup
Data sets and experiment setting: We mainly evaluate our pro-

posed algorithm on the following data sets: one semi-synthetic data

set based on WebKB
1
, one synthetic data set, four real world data

sets, including Noisy MNIST [34]; XRMB [37], CelebA [20] and

Caltech-UCSD Birds [36]. Table 1 shows the statistics of these data

sets. In the experiments, we set t1 = 2, t2 = 2, t3 = 3, α = 1, β = 1,

the initial learning rate to be 0.03 with decay rate 0.96 if not speci-

fied, and the optimizer is momentum stochastic gradient descent.

To yield richer and more discriminative feature representation, we

adjust the dimensionality of the representation denoted as h based

on the dimensionality of the input data, and the dimensionality h is

specified for each data set. The number of layers for the encoders,

the decoders, and the discriminator can be adjusted to specific appli-

cation scenarios. Since all the deep model baselines (e.g., Deep IB)

are using fully connected layer networks, in the experiments, we set

the encoders, the decoders, and the discriminator to be three-layer

fully connected layer networks, and the classifier to be a two-layer

fully connected layer network.

Reproducibility: All of the real-world data sets are publicly avail-

able. The code of our algorithms could be found via the link
2
. The

experiments are performed on a Windows machine with 8GB GTX

1080 GPU.

Comparison methods: In our experiments, we compare with

the following methods: FCL, a four-layer fully-connected neural

network trained with two concatenated views; Linear CCA [3],

linear transformations of two views; DCCA [1], nonlinear trans-

formations of two views by canonical correlation analysis; DC-

CAE [34], deep canonical correlated auto-encoders for two views;

Deep IB [33], deep information bottleneck for multi-view learning.

1
http://www.cs.cmu.edu/~webkb/

2
https://github.com/Leo02016/ANTS
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Data Sets # of Training Samples # of Test Samples # of views # of labels
WebKB 6,626 1,656 2 7

Noisy MNIST 32,000 10,000 2 10

XRMB 75,000 15,000 2 15

CalebA 45,000 12,000 2 40

Caltech-UCSD Bird 950 238 2 40

Table 1: Statistics about five real-world data sets

WebKB

Model Accuracy F1 Score
linear CCA 0.575 ± 0.012 0.522 ± 0.013

DCCA 0.617 ± 0.009 0.604 ± 0.015

DCCAE 0.652 ± 0.010 0.629 ± 0.010

FCL 0.680 ± 0.002 0.656 ± 0.003

Deep IB 0.650 ± 0.009 0.646 ± 0.009

ANTS 0.708 ± 0.004 0.686 ± 0.004
Synthetic Data

Model Accuracy F1 Score
linear CCA 0.674 ± 0.009 0.672 ± 0.006

DCCA 0.709 ± 0.007 0.711 ± 0.009

DCCAE 0.778 ± 0.007 0.773 ± 0.012

FCL 0.897 ± 0.004 0.897 ± 0.004

Deep IB 0.854 ± 0.007 0.854 ± 0.007

ANTS 0.953 ± 0.005 0.953 ± 0.005
Table 2: Results on WebKB and synthetic data sets

(a) Accuracy

(b) F1 Score

Figure 3: Performance comparison on Noisy MNIST, XRMB,
CelebA and Caltech-UCSD Birds (Best viewed in color)

Following [34], we also use SVM to make the final prediction for

CCA based methods, after finding the latent representation.

4.2 Semi-synthetic and Synthetic Data Set
The goal of these two semi-synthetic/synthetic data sets is to show

that CCA based methods cannot handle the noisy data as they ig-

nore the label information, thus leading to a decrease in prediction

performance. In our experiments, we evaluate the performance of

our proposed method on one semi-synthetic and one synthetic data

set.

The semi-synthetic data set is based on an online textual data

set named WebKB, which consists of over 8000 web pages from

multiple universities, and these web pages are manually classified

into seven categories (labels), e.g., student, faculty, staff, course,

project, etc. We extract TF-IDF representation by converting the

content of the web pages to word vectors. The dimensionality of

this representation is 10,111 after we remove the stop words. Then,

we use two different non-linear mapping functions (sigmoid(·) and

tanh(·)) after normalization to construct the two views. Besides,

we add random normal distribution noise (N(0, 0.2)) to the con-

structed views and shuffle the order of the features. The final di-

mensionalities of the two views are both 10,611. For our proposed

algorithm, we set the dimensionality of the representation to be

300, k1 = k2 = 50,d1 = d2 = 233 (we use the zero-padding to fill

the last segment) and we use 80% data as the training set and the

remaining 20% as the test set.

The synthetic data set is generated in the following way. First,

we sample 10,000 data points with the feature dimensionality of

500 categorized into two balanced classes based on the method

used in [10]. Then, we use two different non-linear mapping func-

tions (sigmoid(·) and tanh(·)) after normalization to construct two

views. Besides, we add random noise from two normal distributions

(N(0, 0.5) and N(1, 0.7)) to the constructed views and shuffle the

order of the features. The noise with the dimensionality of 50 is

added to both views and the final dimensionality of both views are

550. For our proposed algorithm, we set the dimensionality of the

representation to be 100, k1 = k2 = 11,d1 = d2 = 50 and we use

80% data as the training set and the remaining 20% as the test set.

The comparison results in terms of the accuracy and the F1 score

are shown in Table 2. This table shows that our proposed model

is better than the others in terms of both evaluation metrics. By

observation, we find that for the synthetic data set, the accuracy

of ANTS reaches 0.953 compared with 0.897 for the second-best

baseline. This shows that our proposed method handles noisy data

very well because the co-attention module helps users filter out the

noisy features by putting a small weight on these noisy features,

while the CCA based methods achieve suboptimal performance as

they do not utilize the label information to derive the latent rep-

resentation. For the semi-synthetic data set WebKB, our proposed

method achieves the best performance compared with all other

baselines.
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4.3 Real World Data Sets
Next, we test the performance of our proposed method on four

real-world data sets, including Noisy MNIST, XRMB, CelebA, and

Caltech-UCSD Birds. The first data set is generated from MNIST

data set [16]. We rotate the original MNIST data set at angles ran-

domly chosen from [− π
4
, π
4
] to generate the first view and blur the

images to create the second view. Both views have 784 features

and 10 digits are considered as labels. Because some baselines are

time-consuming, we repeat the experiments by randomly sampling

32,000 data points for training and another 10,000 data points for

testing. For our proposedmethod, we setk1 = k2 = 7,d1 = d2 = 112.

The second data set is from the Wisconsin X-ray Microbeam Data-

base, which consists of two views. The first view is acoustic data

with 273 features and the second view is articulatory data with

112 features. We repeat the experiments by randomly sampling

75,000 data points for training from the first 15 classes and another

15,000 data points for testing. For our proposed method, we set

the dimensionality of the representation to be 50, α = 2, β = 1,

k1 = k2 = 5,d1 = 55, and d2 = 23 (we use the zero-padding to fill

the last segment). The third data set is composed of 202,599 images

of celebrities, and 40 labeled facial attributes. We repeat the experi-

ments by randomly sampling 45,000 data points for training and

over 12000 images for testing. In this experiment, we choose 5 facial

attributes related to hair as the labels, e.g., bald, black hair, straight

hair, wavy hair, and wearing a hat. To get two views for this data set,

we adopt the idea of creating two views in the Noisy MNIST data set

by randomly rotating an image to create the first view and blurring

the image to generate the second view. To reduce the run-time for

the baselines, we first convert the RGB images to gray-scale images

and then resize them to 100× 100 to be fair to all competitors. There-

fore, the final dimensionalities of the two views are both 10,000.

For our proposed method, we set k1 = k2 = 50,d1 = d2 = 200.

For the last data set, we sample 1188 images from the first 40

classes. To get the two views, we follow the similar procedure

of generating Noisy MNIST [34]. We rotate each image at angles

randomly chosen from [− π
4
, π
4
] to generate the first view. The pro-

cedure for generating the second view consists of two steps. In the

first step, we compute the mean µ and the standard deviation σ of

each image x
j
2
, generate the random noise N(µ,σ ). In the second

step, we sample 5% index denoted as sampled_index of the image

x
j
2
and add the noise to the image based on the following function,

x
j
2
(sampled_index) = x

j
2
(sampled_index)+0.1∗N(µ,σ ). Consider-

ing the high time complexity of some baselines (e. g., CCA, DCCAE,

Deep IB) for high dimensional data like images, we fine-tune a

pre-training model (e. g., VGG-19
3
) on our dataset to extract the

hidden representation of each image and then use the representa-

tion as the input for our experiments. The dimension of the hidden

representation for both views is 1024. For our proposed method,

we first apply the Mask-RCNN [12] to split each image into three

segments, and then we also use the same pre-training model to

get the representation for each segment of each image (if the im-

age could be split into more than three segments, we pick the top

two segments with the most pixels and keep the rest in the third

segment; if the image could only be split into two segments, we

randomly pick a segment as the third one). For this dataset, we set

the learning rate to be 0.08 with decay rate 0.96, the batch size to

3
https://pytorch.org/docs/stable/torchvision/models.html

be 3 (as we find a large batch size leads to the worse performance)

and the number of epoch to be 150, α = 2, β = 1 and we use 80%

data as the training set and the remaining 20% as the test set.

For these four real-world data sets, the y-axis is accuracy in

Figure 3 (a) and F1 score in Figure 3 (b), respectively. These figures

show that our proposed model, ANTS, outperforms the others with

both evaluation metrics in all three data sets. Notice that on the

Noisy MNIST data set, most CCA based methods achieve an accu-

racy above 85%, while ANTS even reaches the accuracy of 98.05%,

compared with the accuracy of 96.12% for the second-best method

(Deep IB). As we mentioned, the two views of the Noisy MNIST

data set are either contaminated by the Gaussian noise or distorted

by the random rotation but the experimental results on this data

set demonstrate that our proposed method could handle the noise

very well. In the XRMB data set, ANTS boosts the prediction perfor-

mance by more than 3.5% compared with the second-best baseline

in terms of both accuracy and F1 score. In Caltech-UCSD Birds data

set, ANTS outperforms the second-best algorithm by more than

8%, which demonstrates the effectiveness of handling the noisy fea-

tures for our proposed method. To show how the proposed method

interprets the predictions, we conduct a case study in Section 5.1,

which further shows why our proposed method outperforms state-

of-the-art algorithms in this data set.

4.4 Parameters Analysis
In this section, we analyze the parameter sensitivity of our pro-

posed ANTS algorithm on Noisy MNIST data set, including t1,
t2, t3, the dimensionality of the representation h and the hyper-

parameters α and β . In all experiments, we use 10,000 data point

as the training data and 10,000 data point as the test data; we set

the batch size to be 50, and the total iterations number to be 10,000

and the learning rate to be 0.03. In this parameters analysis, if not

specified, we let h = 30, t1 = 2, t2 = 2, t3 = 3, α = 1 and β = 1.

To evaluate t1, t2, and t3, we increase the value of one parameter

and fix the other three parameters to be 1, parameter h to be 30.

The x-axis in the Figure 4 (a) is the value of each parameter, e.g.

t1 = 1, . . . , 5 and the y-axis is the classification error. Based on

the observations, we find that the classification error increases as

t1 increases, and a large value of t1 leads to a bad representation

and high classification error. The classification error decreases as t2
and t3 increases. The model reaches its optimal state when t2 = 2

and t3 = 3 and does not change much when t2 and t3 increases.
In conclusion, t1 and t2 should be set to an identical number, e.g.

t1 = 2 and t2 = 2, since we need to balance the loss among the

discriminator and the generators. The suitable value for t3 could be
3 based on the classification error shown in the Figure 4 (a). Similar

to the Figure 4 (a), the x-axis of the Figure 4 (b) is the dimensionality

of the latent representation and the y-axis is the classification error.

Based on the classification error in Figure 4 (b), we observe that

the dimensionality of representation does not influence the classi-

fication error too much, although the model achieves the slightly

better performance when h = 30 than other value of h. However,
when the dimensionality of representation is less than 10, the clas-

sification error increases rapidly. One explanation for this is that

the lower-dimensional representation (h<10) fails to capture all

useful information from original data, thus leading to an increase in

classification error. For the hyper-parameters α and β that balance

the cross reconstruction loss and the classification loss, we fix one
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(a) Parameter t1,t2 and t3

(b) Parameter h

(c) Parameter α and β

Figure 4: Parameter analysis (Best viewed in color)

parameter and increase the value of another one. In Figure 4 (c), the

y-axis is the classification error and the x-axis is the value of these

hyper-parameters. By observation, we find that when we increase

the value of alpha or beta, the classification error also increases

slightly. One possible explanation for this observation is that the la-

tent representation is slightly influenced by the imbalance between

the cross reconstruction loss and the classification loss.

5 CASE STUDIES
In this section, we present a case study on Caltech-UCSD Birds to

show the interpretability of the proposed method in Subsection 5.1,

and case studies on Noisy MNIST to demonstrate the effectiveness

of adding complementary information in Subsection 5.2. Finally,

We compare several different regularizers in Subsection 5.3.

5.1 Interpretation via Co-attention
In many real-world applications, the end-user must understand the

prediction results from predictive models. Here we conduct a case

study to interpret the prediction results and provide relevant clues

for the end-users to investigate the vulnerability of the proposed

algorithm in the noisy environment. We visualize the experimental

results on the Caltech-UCSD Birds in the Figure 5, where the Fig-

ure 5 (a) and (b) are selected from the training set and the Figure 5

(c) and (d) are selected from the test set. The experimental setting

is stated in Section 4.3. In each sub-figure, the first row is the first

view and the second row is the second view; seg_1, seg_2 and seg_3

are three image segments for each view. The attention wights of

each image segment for two views, (e. g., a1 and a2 in Equation 4)

are visualized in the bar charts on the right-hand side. The x-axis of

the bar chart is the index of the segment, the y-axis is the attention

weight, and the bars in blue (orange) are the attention weights for

the first (second) view.

Based on these four sub-figures, we have the following observa-

tions. First, we find that in Figure 5 (a) and (b), ANTS assigns larger
weights to the important segments, compared with the bar chart in

Figure 5 (a) and (b). This happens because (a) and (b) are selected

from the training set, while (c) and (d) are from the test set. Second,

in Figure 5 (a), there are two different types of birds, and the label of

this image is "Laysan albatross", a large white seabird. ANTS assigns
0.80 to the seg_1 of the first view and 0.72 to the seg_2 of the second

view, which suggests that ANTS successfully captures the most im-

portant features of this bird to make an correct prediction. Third, in

Figure 5 (c), ANTS makes an incorrect prediction because the model

puts a large weight on the wrong features (the background of the

image) instead of the features of the birds. With these observations,

we could draw the following conclusions. First, our proposed model

interprets the prediction results and shows the end-users why the

model makes an correct or incorrect prediction by assigning the

weights to different segments for each view. Second, our proposed

methods is capable of handling both noises very well, as two views

are generated in noisy environment.

5.2 Ablation Study
In the ablation study, we aim to demonstrate that the boost in

the predictive performance is due to the view-specific information

rather than the increased dimensionality of the hidden representa-

tion. Thus, we examine our hypothesis in the experiment on the

Noisy MNIST data set based on the metric of the classification error.

The methods for comparison are listed as follows:

• Method 1: the proposed method utilizing both the shared in-

formation and the view-specific information, namely, ANTS.
• Method 2: the proposed method utilizing the shared informa-

tion only but the shared information is copied three times.

Since ANTS utilizes not only the shared information but also view-

specific information, for a fair comparison, in Method 2, the shared
information is copied three times such that the dimensionality of the

hidden layer inMethod 2 is the same as that ofMethod 1. In Figure 6

(a), we observe that at the iteration of 500, the classification error of

both methods decreases to 0.05. Notice that the classification error

ofMethod 1 is less than 2.3%, whileMethod 2 drops to 4% in the end,

which demonstrates that leveraging complementary information

could further boost the predictive performance.

5.3 Comparison of View Reconstruction
Regularizers

In this case study, we demonstrate the effectiveness of the cross
reconstruction loss and the effectiveness of utilizing the label infor-

mation by evaluating the quality of the generated representation

with different regularizers on the Noisy MNIST data set. The regu-

larizers for comparison are listed as follows:

• Reg 1: Using F1(G1(x1)) to reconstruct x1 and F2(G2(x2)) to
reconstruct x2 without utilizing the label information.
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two views seg_1 seg_2 seg_3 Attention weights for two views

(a) Predicting Laysan Albatross

(b) Predicting Sooty Albatross

(c) Predicting Rhinoceros Auklet

(d) Predicting Rusty Blackbird

Figure 5: A case study on the Caltech-UCSD Birds (Best viewed in color). In each sub-figure, the first row is the first view and
the second row is the second view; seg_1, seg_2 and seg_3 are three image segments for each view. The x-axis of the bar chart
is the index of the segment, the y-axis is the attention weight, and the bars in blue (orange) are the attention weights for the
first (second) view.

• Reg 2: Using F1(G2(x2)) to reconstruct x1 and F2(G1(x1)) to
reconstruct x2 without utilizing the label information.

• Reg 3: Cross reconstruction loss without utilizing the label

information (Equation 7).

• Reg 4: The L1 norm of the difference between two representa-

tions generated from two views ∥G1(x1) −G2(x2)∥1 without
utilizing the label information.

• Reg 5: Cross reconstruction loss utilizing the label informa-

tion.
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(a)

(b)

Figure 6: (a) Classification error vs the number of iterations
on Noisy MNIST data set. (b) Analysis of the quality of
the representation generated by different regularizers. (Best
viewed in color)

Because we only aim to find out how different regularizers im-

posed on the encoders influence the generation of the representa-

tion, we exclude the classifier during the training stage in Algo-

rithm 1 for the first four regularizers except for Reg 5. In other words,
we do not utilize the label information to constrain the generation

of the representation except for Reg 5. For all the experiments, we

randomly sample 32,000 examples from the Noisy MNIST data set

as our training data, and 10,000 examples as the test data. For a fair

comparison, we set t1 to be 2, t2 to be 2 for all five regularizers, t3
to be 3 for the last regularizers, the batch size to be 64, the total

iteration number T to be 12,500, and the initial learning rate to

be 0.05 with decay rate 0.96. Furthermore, we evaluate the qual-

ity of the representation based on the classification error at every

500 iterations. In Figure 6 (b), the y-axis is the classification error

evaluated on 10,000 test examples, and the x-axis is the number of

iterations. It is easy to see that: when the label information is not

utilized during the training stage, Reg 2 converges slightly faster

than Reg 1; compared with Reg 1, Reg 2 and Reg 4, the model with

cross reconstruction loss (Reg 3) converges at the faster rate and the
quality of the representation generated by Reg 3 is also better than

the representation generated by Reg 1 and Reg 2; when the label

information is utilized, the quality of the generated representation

is further enhanced, and the classification error rate drops rapidly

(see the comparison between Reg 3 and Reg 5 in Figure 6 (b)). We

also observe that the classification error for the model with L1 norm
regularizer (Reg 4) decreases to a local minimal error rate of 0.4195

after 3000 iterations and starts to vibrate. The main reason is that

there are no constraints imposed to restrict the distribution of Pд1
and Pд2 and thus, the model with L1 norm regularizer yields the

trivial representation. Based on the results shown in the Figure 6

(b), we can conclude that our model with cross reconstruction loss

has a faster convergence rate and tend to find better representation

than other regularizers. This demonstrates that cross reconstruction

loss indeed enforces the two encoders G1(·) and G2(·) to find the

shared representation at a faster pace, as mentioned in Subsection

3.2. When the label information is leveraged during the training

stage, the convergence rate and the quality of the representation

are greatly improved.

6 CONCLUSION
In this paper, we propose ANTS - a deep adversarial co-attention

model for multi-view subspace learning. We extract and integrate

both the shared information and complementary information to

obtain a more comprehensive representation. By imposing the cross

reconstruction loss and incorporating a classifier into the proposed

framework, we further enhance the quality of this representation.

We also extend our method to accommodate the more generic

scenario with multiple views. We compare our proposed method

with state-of-the-art techniques on synthetic, semi-synthetic, and

real-world data sets to demonstrate that our method leads to sig-

nificant improvements in the performance. Finally, case studies

show how the proposed method interprets the predictive results

on an image data set, the importance of leveraging complementary

information, and the effectiveness of the regularizer imposed on

view reconstruction.
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