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VizLinter: A Linter and Fixer Framework for Data Visualization
Qing Chen, Fuling Sun, Xinyue Xu, Zui Chen, Jiazhe Wang, and Nan Cao

Fig. 1. Four example cases of VizLinter. In each case, the chart on the left is the original visualization with errors, and the chart on the
right is the one modified by VizLinter.

Abstract— Despite the rising popularity of automated visualization tools, existing systems tend to provide direct results which do
not always fit the input data or meet visualization requirements. Therefore, additional specification adjustments are still required in
real-world use cases. However, manual adjustments are difficult since most users do not necessarily possess adequate skills or
visualization knowledge. Even experienced users might create imperfect visualizations that involve chart construction errors. We
present a framework, VizLinter, to help users detect flaws and rectify already-built but defective visualizations. The framework consists
of two components, (1) a visualization linter, which applies well-recognized principles to inspect the legitimacy of rendered visualizations,
and (2) a visualization fixer, which automatically corrects the detected violations according to the linter. We implement the framework
into an online editor prototype based on Vega-Lite specifications. To further evaluate the system, we conduct an in-lab user study. The
results prove its effectiveness and efficiency in identifying and fixing errors for data visualizations.

Index Terms—Visualization Linting, Automated Visualization Design, Visualization Optimization

1 INTRODUCTION

Visualization tools, such as business intelligence software and program-
ming toolkit, have gained plenty of users as visualization becomes
popular across various domains [27]. Common visualization tools of-
ten require users to set specifications of visualizations either through
programming syntax or user interfaces. However, these operations
demand users to have solid background knowledge in data analysis
and visualization development. The rising demand for creating ap-
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propriate visualizations triggers the research interest in developing
automated systems to recommend and build expressive and efficient
visualizations, especially for users with limited expertise. Most existing
automated systems are either rule-based or machine-learning-based.
Rule-based systems program visual encoding principles into rule sets to
automate the generation of visualizations. They can recommend visual-
izations based on input data characteristics [62], intended tasks [13],
and user behaviors [20]. Machine-learning-based systems learn rela-
tionships between data and the corresponding legitimate visualizations
directly [24]. Although current recommendation systems are capable
of fast-forwarding source data into proper visualizations, they are not
always compatible with input data or the visualization requirements due
to the limitation of fixed encoding rules and training data. Therefore,
manual specifications are inevitable in practice. However, since users
of automated systems tend to have inadequate expertise, it is difficult
for them to make manual changes while following well-established
visual design rationales.

Although manual adjustments are required when automated results
cannot fulfill user needs, few existing works are capable of detecting
errors and suggesting corrections for manual inputs. Some prior works
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are able to highlight problems [23, 25] or to lint, that is, flagging errors
in the code for visualizations [34], but they do not provide any solutions
to the detected problems. Other works concentrate on auto-completing
user input specifications and recommending optimal alternatives by
resolving predefined constraints in an end-to-end manner [32,37]. How-
ever, they do not present any explanations or suggestions on how to fix
imperfect visualizations.

Therefore, programmatic solutions are still absent to detect breached
visualization principles and resolve the violations with optimum op-
erations. To remedy this absence, we construct a linter, which orig-
inally represents static code analysis tools to flag bugs or issues in
the programming code, to detect violated rules in the visualization
using Answer Set Programming (ASP) [31], a declarative constraint
programming language which allows us to model high-level design
knowledge into logical facts. An ASP program consists of Prolog-style
rules a :- L_1, L_2, not L_3, not L_4., where a is the head of
the rule and L_i are literals. The rule states that the head a is derived if
L_1 and L_2 are true while L_3 and L_4 cannot be true. Specifically,
the head of each rule in VizLinter is the rule id in the rule base and
corresponding parameters, and each literal represents an attribute of
the visualization. ASP enables easy maintenance and iteration on the
rule base [11], currently refined from the Draco knowledge base [37].
After violated rules are detected, we formulate a fixer for the broken
rules using linear optimization with a designated reward function.

In this paper, we propose a novel linter and fixer framework for data
visualization. It detects infringed rules in visualizations and provides
solutions to those broken rules by optimizing through linear program-
ming. We implement our framework for Vega-Lite-based visualizations,
as Vega-Lite is a widely used language in the visualization community.
Our implementation follows the pipeline as shown in Fig. 2. It first
translates input Vega-Lite specifications into ASP facts. The linter then
checks against the facts via an ASP solver and detects the violated prin-
ciples. Next, the fixer performs the action selected by the optimization
algorithm and resolves the broken rules. To demonstrate the usefulness
of the proposed framework, we develop a prototype and conduct a user
study to assess its efficacy. According to the feedback, our framework
is confirmed as helpful by providing ad-hoc prompts and solutions
during the creation of visualizations. It can benefit not only business in-
telligence tool users but also more skilled practitioners and researchers.
It is considered as accessible for many existing tools and systems to
adapt as an extension and to assist direct development in Vega-Lite
coding syntax. Besides, the study results indicate the pedagogical value
of our framework as users are able to learn visualization specification
rules through the interaction. While the current functionality is already
valuable as an automatic error detection and correction tool, it is ex-
pected to lint and fix aesthetic or semantic-related issues as well in the
next iterations. To summarize, our contributions are as follows:
• A linter-and-fixer framework. We present a novel linter-and-fixer

framework for data visualization, which can examine for erroneous
specifications and resolve them automatically.

• A visualization linter. We refine the design principle constraints
in Draco [37] as a concrete rule base and construct a visualization
linter to detect violations using ASP.

• A visualization fixer. Using our proposed reward function and the
operation transition costs from GraphScape [29], we formulate an
optimization algorithm using linear programming to fix the violated
rules detected by the linter.

• A user study. We evaluate the effectiveness of our framework
through a user study on the prototype system. Through the study, we
validate the effectiveness of our framework in practice and collect
instructive reflections for future improvement.

2 RELATED WORK

In this section, we draw on prior work on recommendation systems,
linting, and optimization models for visualization.

2.1 Recommendation Systems for Visualization
Visualization recommendation systems accommodate users by per-
forming the heavy-lifting jobs, such as data analysis and insight ex-

traction. They can automatically generate and suggest visualizations
for a given dataset. Earlier studies tend to recommend visualiza-
tions based on predefined rules. They derive rules from statistical
features [46, 54, 61], visual effectiveness measures [9, 14], and user
behaviors [20] or tasks [43]. Recent works benefit from machine learn-
ing and other algorithms [64]. VizML automatically infers five design
choices for input datasets using a machine learning algorithm derived
from data characteristics [24]. ClustMe, developed by Abbas et al.,
ranks cluster patterns of monochrome scatterplots using a perceptual
visual quality measure to match human judgment [2]. Shi et al. present
a sequencing model that recommends optimal sequences for different
tasks [47]. Kim et al. introduce a directed-graph model for visualization
sequence recommendation based on chart similarity [29].

Our framework presents a solution to amend visualization with flaws
compared to these studies on fast-forwarding visualization recommen-
dation. It allows users to decide if they want to adopt the recommended
adjustment and has more pedagogical value. Although our framework
is also rule-based, we model our rulesets using Answer Set Program-
ming. Therefore, unlike traditional rule-based recommendation systems
whose rule bases are immutable, our framework allows timely updates
and modifications on the rules.

2.2 Linting for Visualization
The idea of linting is borrowed from computer science, which means
static code analysis tools to flag bugs or errors in the programming code.
Recently, linting has been applied beyond traditional programming lan-
guages. Before being applied in visualization, the concept of linting has
been used in data wrangling as a validation approach to eliminate errors
in provided datasets. CheckCell [5], ExceLint [4], and Uni-Detect [55]
undertake data validation errors in tabular data. Muslu et al. [40] and
Brachmann et al. [10] furthermore consider potential problems with
data curation and large data sets. Since data wrangling is an impor-
tant procedure in creating visualizations, works on data linting are
also valuable for later research on visualization linting. Meanwhile,
in the visualization field, the verification and evaluation of visualiza-
tions are also highly relevant to visualization linting. Kirby and Silva
emphasize the significance of verifying the accuracy of visualization
techniques [30]. Prior works undertake the evaluation of visual quality,
algorithm performance, and user experience of visualization with differ-
ent approaches [19,26]. The idea of “visual linting” was first introduced
by McNutt and Kindlmann to apply linting in visualization [34]. They
define visualization lint as a framework, that takes in a visualization or
its production code, evaluates whether it will pass, and explain why it
fails. Their linter targets only readability-related problems in charts,
those causing charts difficult for humans to observe [34]. Our work,
instead, focuses on errors that make charts illegal or prevent them from
rendering properly, rather than aesthetic problems such as readability
issues of a valid visualization. After linting being introduced into vi-
sualization, some research takes on different perspectives to study the
application of linting in visualization. In Metamorphic VegaLite Ana-
lyzer, metamorphic testing is applied to validate if a visualization can
properly represent the input data [35]. However, they do not pay special
attention to critical errors. Besides, due to reliance on bootstrapping
and other statistical techniques, Metamorphic VegaLite Analyzer tends
to show limited performance in terms of speed. Since our framework
uses Answer Set Programming for rule inspection, which involves less
computation, it is able to detect errors without latency.

More recently, Hopkins et al. design and evaluate VisuaLint, which
displays five chart construction errors in visualization using sketchy
annotations instead of conventional cues in text messages [23]. While
the works mentioned above share some similar design considerations
with our work, they focus more on the design- and readability-related is-
sues, without any suggestions or functions to help users correct existing
errors in the visualization.

2.3 Optimization for Visualization
Visualizations are usually not perfect upon generation due to various
factors, such as data volumes or display sizes. Therefore, optimization
can help visualizations accommodate different situations and remain
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Fig. 2. The pipeline of VizLinter includes two key modules: the linter and the fixer. Given the visualization specification with errors, it goes through the
linter and the fixer to get the revised specification.

good quality. Since data quality has a significant impact on the quality
of visualization, some research focuses on the data preparation for visu-
alization. For example, Wen and Zhou provide a model to dynamically
derive a set of optimal data transformations for the target visualiza-
tion [59]. Many other works concentrate on the optimization of charts
directly. Some target problems for specific types of charts. Ellis and Dix
focus on clutter reduction in parallel coordinates using sampling tech-
niques [16]. Trutschl et al. also tackle point occlusion issues in parallel
coordinates but using a self-organized map instead [53]. Wang et al. im-
prove multi-class scatterplot by optimizing color assignment for class
separation [56]. Heer and Agrawala develop multi-scale banking, en-
hancing the visual perception of segment orientations in line charts [21].
Byron and Wattenberg present a wiggle-minimizing method to opti-
mize the overall shapes of stacked graphs [12]. Tang et al. develop an
authoring tool for storyline visualization, PlotThread, which consists
of an AI agent to optimize the layout [50]. Existing research also
covers the optimization for pixel-based charts [28], radial charts [51],
node-link diagrams [57], matrices [6], treemaps [48], geographical
maps [8], and text-based charts [45]. Other research resolves general
issues regardless of chart types. Draco is a constraint-based system to
score visualizations based on the violations against design rules and
recommend the top-scored candidate [37]. Lin et al. contribute Dz-
iban extending on Draco, which additionally optimizes the synthesized
charts to accord with the anchor charts [32]. Wu et al. address the
responsive display issues of SVG-based visualization on mobile screens
using reinforcement learning [63].

However, while previous work could suggest optimal visualizations,
they are not able to optimize erroneous visualizations with violated
design rules, especially when violations prevent charts from compiling.
The target of our work is to provide common solutions to various types
of visualizations. Specifically, the ideal framework is aimed to improve
a given visualization by revising the incorrect specifications. Moreover,
to provide the most efficient modification, we adapt the transition cost
collected in GraphScape [29]. A detailed description of the proposed
algorithm is presented in Section 4.2.

3 DESIGN REQUIREMENTS

In this section, we collect the common issues that practitioners have
encountered and summarize the design goals accordingly.

3.1 Common Issues in Visualizations

To better understand the common issues that practitioners encounter and
what kind of assistance might be helpful, we conducted semi-structured
interviews with two experts. One is an experienced visualization re-
searcher who has ten-year programming experience and visualization
knowledge; the other is the team leader of a data intelligence department
in a well-established IT company. Both experts have practical experi-
ence in developing data visualization systems for various domains such
as business intelligence and social network analysis. In the interviews,
the experts noted that creating a visualization requires specifying marks
and channels, the two primary components of visual encoding [7].
However, simply declaring marks and channels will not guarantee a
successful encoding. The complex conditions behind it, such as data
characteristics, can lead to failed visualizations if not compatible with

stated specifications. We frame the issues within high-level visualiza-
tion grammars, such as Tableau/Polaris [49] and Vega-Lite [44]. These
high-level grammars are favored in exploratory visualization due to
the preference of conciseness over expressiveness [22]. In high-level
visualization grammars, declarations of marks and encoding channels
are required to create visualizations for a given data set. Declaration
of marks is to specify the mark type (e.g., point or line) for the visual-
ization. Declaration of encoding channels includes the specification
of the expressed data field (column) and how it is expressed: whether
using size or color channel and if any data transformation (e.g., binning,
aggregation, logging, scale) or visual transformation (e.g., stacking)
are applied. Consequently, four common issues are categorized from
the expert interviews and previous literature related to visualization
principles [14, 33, 39, 58] and visualization grammar [60].
I1. Incompatibility issues within each encoding channel. Within-
encoding issues illustrate illegal mapping between the selected data
field (column) and the encoding channel [14, 39]. They can lead to
failed visualizations when, for instance, a wrong data type is declared,
a chosen encoding channel is incompatible with the selected column,
or a chosen aggregation is incompatible with the selected column.
I2. Incompatibility issues across multiple encoding channels. Even
if each individual encoding is correct, the visualization can still be
problematic due to conflicts across encoding channels [14, 60]. One
possible cause is that an encoding specification is not compatible with
another. It can be attributed to situations such as duplicated usage of
the same channel or identical columns used in both axes.
I3. Incompatibility issues between encoding channels and marks.
Potential failures can occur when the chosen mark is not compatible
with the selected encoding channel [14, 39], for example, when the size
channel is chosen with marks other than points or text.
I4. Typo issues. It is natural for humans to make illegal declarations
or typo errors during manual input. However, any minor typo mistakes
can prevent a visualization from valid rendering.

According to the above issues, we refine a collection of 41 rules
fundamental to construct legitimate charts. In this paper, we regard a
chart as invalid or illegal once it violates one or more rules of the four
common issue categories, and possibly fails to render. Illegal chart spec-
ifications differentiate from “readability-related” problems mentioned
by McNutt et al. [34] in that they may prevent charts from rendering
or presenting correct data. However, “readability-related” problems
focus on charts rendered successfully with correct data presentation,
while other issues, such as a lack of title or annotation or a misuse
of colors, occur. Such issues are more related to the aesthetics aspect
of visualizations, which are excluded in our current work. While our
current coverage intersects with the one defined by Hopkins et al. [23],
we do not take the issues regarding dual axis, legends, and ineffective
colors into account since the primary focus of this paper is the legibility
of visualization.

3.2 Design Goals
Apart from the common issues in visualization, we also interviewed
the experts on how they would utilize external support to help find and
modify existing issues. Three design goals are thus derived as follows.
G1. Facilitate visualization developers with error indicators. Our
primary target users are visualization developers with inadequate expe-
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rience and skilled developers who want to improve their efficiency and
accuracy. For those users, concurrent error disclosure could speed up
the development process, especially when they are not able to detect
problems. Therefore, we need to offer developers the option to see what
and where errors are in the specification. In our framework design, this
consideration resolves to a linter that inspects errors in visualizations
and displays details of the errors.
G2. Automate the fixing operations on detected errors. Error indi-
cators alone cannot fully speed up development or ensure correctness
because it still takes time and effort to seek solutions for the errors.
When making manual adjustments, developers may choose operations
in a roundabout way. Consequently, we design a fixer to tackle the
problem in the most efficient way. We regard the best solution as the
one that involves fewer actions while fixing more errors. In Section
4.2, we present the reward function and the corresponding optimization
algorithm based on this logic.
G3. Support easy integration and iteration. Many existing business
intelligence tools or visualization systems are built on standard visual-
ization grammars. Consequently, we design the liner and the fixer with
grammar-based visualization specifications as input. Since Vega-Lite
is a standard grammar in visualization research, we use it as the basic
data input into our framework. Besides, we choose to form the linter
using Answer Set Programming (ASP) so that the ruleset can be easily
updated according to different scenarios or domains [11]. Moreover,
the fabrication of our linter-and-fixer framework can serve as design
guidance for existing tools and systems with similar functionalities.

4 THE VIZLINTER FRAMEWORK

Guided by the design goals summarized in Section 3.2, we design
and illustrate the pipeline of the framework in Fig. 2. First, the user
inputs a piece of visualization specifications (in our implementation, the
inputs are in Vega-Lite JSON format). The framework then transforms
the specifications into a list of facts that ASP can handle (G3). Next,
the linter built upon ASP examines the facts and detects violations.
The corresponding errors are highlighted in the original specifications
(G1). For the fixer part, by applying linear optimization programming,
it automatically selects an optimal set of operations that resolve the
detected violations (G2). Finally, the solutions are translated back to
a refined piece of Vega-Lite JSON specifications. In this section, we
first present the construction of the linter, including the constraints and
the answer sets we developed. Then, we describe the algorithm, the
reward, and the cost functions used to build the fixer.

4.1 Visualization Linter
The linter is made up of two components, a set of predefined rules
visualization should obey and an Answer Set Programming (ASP)
solver detecting contravened rules.

4.1.1 Linting Rules
A visualization linter, borrowing the concept of “linting” from computer
science, is a tool built on a collection of rules that should be obeyed.
It functions similarly to traditional linting tools in programming, such
as ESLint [1]. Like ESLint, VizLinter also examines the violation of
rules; however, visualization linting rules include not only syntax errors
but also visualization principles. Consequently, the coverage of the
ruleset is a determinant of the performance of the linter. The essential
principles, which any legal visualization should adhere to, fabricate the
basic ruleset for our linter’s structure. We refine a collection of 41 rules
according to the common issues summarized in Section 3.1 and embed
them in the linter.

In order to minimize human efforts and potential errors caused by
user input, we directly parse data range and cardinality from original
data sets. Consequently, some rules related to user input about data
properties in Draco are not considered in our collection. Some rules
defined in Draco have identical coverage or one’s coverage subsets
another. In this case, we discard rules with duplicated coverage and
keep rules that cover more cases. Besides, we simplify some complex
constraints by breaking them down into more straightforward rules
in the fixer. For instance, in Draco, a constraint requiring stack to

come along with a discrete color channel is divided into three distinct
rules: one takes care of the absence of color channel when no encoding
channel is specified; one deals with the absence of color channel when
size is specified as an encoding channel; the third handles when a
non-discrete color channel is used. Such decomposition aids in the
development of a coherent ruleset and the assignment of resolving
operations. Finally, we elaborate a collection of 41 rules as the linter’s
initial rule base, with a complete list available online1.

4.1.2 ASP for Linting

We follow the same approach as in Draco to formulate visualization
principles using ASP since it enables us to construct a stable model for
our rule base. When there is a need to introduce new rules or update the
complete ruleset for specific use cases, one can simply add or rewrite
the constraints for the intended purposes and not have to re-construct
the whole framework again.

Atoms, literals, and rules are the three building blocks for ASP
programming [11]. Atoms are the elementary propositions that may be
true or false; literals are atoms A or not A; rules are formed by atoms
as a :- L_1, L_2, not L_3, not L_4., where a is the head of
these rules and L_i are literals. If all literals are true, then the head a is
derived; otherwise, a is not established. Particularly, if a rule has only
the head but no literal, such as a :- ., it is called a fact, indicating
that the head is unconditionally true, and such a rule can be abbreviated
as a. On the contrary, a headless rule, such as :- L_1, L_2. without
head a in the rule, is regarded as a constraint, which means L_1 and
L_2 cannot be true at the same time.

In the linter, we present the refined visualization rules in the rule for-
mat of ASP. For example, the rule hard(bin_and_aggregate,C) :-
bin(E,_), aggregate(E,_), channel(E,C). points to encoding
E with channel C using both bin and aggregate. In this rule, a predicate
hard with two parameters, the rule id bin_and_aggregate and the
channel C, is used to express the violation. Channel C indicates in which
encoding channel that the rule is violated. Differently, hard constraints
in Draco are modeled as a set of headless rules, that is, constraints of
ASP, preventing the automatic generation of illegal visualizations that
violate these constraints, rather than detecting any violations from the
given visualization.

The first step in our linter’s process is to translate visualization
specifications (Vega-Lite JSON in our case) into ASP programs of
facts (rules without literals), characterizing how the given visualization
is formed. We develop the translator based on Draco to extract the
attributes such as mark type, encodings, and their properties. We also
incorporate additional functionalities, such as automatically detecting
fieldtype from data. Based on the translated visualization facts and the
defined ruleset, we run an ASP solver to find out rules whose literals are
all satisfied by the facts, in other words, the errors in the visualization.

4.2 Visualization Fixer

After acknowledging problems in the visualization, it is still difficult
and time-consuming for inexperienced developers to understand the
meaning of each linted problem and modify the visualization speci-
fication. To better facilitate visualization developers, we propose an
optimization algorithm to automatically provide optimal solutions to
the detected issues in a given visualization.

4.2.1 Actions for Rules

To validate the legitimacy, we invited two visualization experts to define
feasible actions to solve each rule. In Table 1, all embedded actions are
listed with a detailed explanation of what they can do with the visualiza-
tion. Because each rule can correspond with several declarations in the
specification, breaking the conditions for its establishment is the most
effective way to resolve it. For example, if an encoding misuses the log
scale, one can remove the log scale in the encoding or even change the
encoded data field to another quantitative data field. Following such
methodology, each rule has at least one feasible action and a maximum

1https://github.com/VizLinter/VizLinter-rules
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Table 1. Action Space of VizLinter

Type Action Meaning
Mark CHANGE_MARK Change the mark type for the visualization.

Encoding

ADD_CHANNEL Add one encoding channel in the visualization.
CHANGE_CHANNEL Change the encoding channel in the visualization.
REMOVE_CHANNEL Remove the encoding channel in the visualization.
ADD_FIELD Add data field in the encoding channel.
CHANGE_FIELD Change the data field used in the encoding channel.
REMOVE_FIELD Remove the data field declared in the encoding channel.
CHANGE_TYPE Change the type of the encoding channel.

Transformation

BIN Discretize data values of the encoding channel into a set of bins.
REMOVE_BIN Discard data binning in the encoding channel.
AGGREGATE Perform aggregation on data values in the encoding channel.
CHANGE_AGGREGATE Change aggregation function on the data values in the encoding channel.
REMOVE_AGGREGATE Remove aggregation on data values in the encoding channel.
STACK Stack data values in the encoding channel.
REMOVE_STACK Remove stacking on data values in the encoding channel.

Scale

LOG Apply logarithmic transformation on data values in the encoding channel.
REMOVE_LOG Remove logarithmic transformation on data values in the encoding channel.
ZERO Require a zero-baseline in the scaled domain of the encoding channel.
REMOVE_ZERO Waive the zero-baseline requirement in the scaled domain of the encoding channel.

Typo Correction

CORRECT_MARK Change the illegal mark type to the closest correct one.
CORRECT_CHANNEL Change the illegal channel to the closest correct one.
CORRECT_TYPE Change the illegal data type to the correct one according to data values.
CORRECT_AGGREGATE Change the illegal aggregation function to the closest correct one.
CORRECT_BIN Change the illegal bin number to the correct one.

of five actions, where a rule is established corresponding to several
different situations.

4.2.2 Score of Action
In single-problem cases, it is straightforward to find a solution. How-
ever, in situations where there are multiple problems, potential solutions
are rarely unique. To find the optimal action sets to resolve the violated
rules, we construct an optimization algorithm that considers the reward
and the cost of actions.

We define each action’s reward as its contribution to the visualization,
that is, how many problems in the visualization can be solved after
completing it. The reward is composed of two parts. First, we evaluate
the proportion of problems solved in the visualization:

reward+(a) =
∣Ri−Ri+1∣

∣Ri∣
(1)

where Ri and Ri+1 represent the violated rulesets of visualization before
and after the specific action a. Here we use the relative complement of
Ri with respect to Ri+1 to represent the solved problems. However, there
are occasions where such actions can bring unintended consequences,
one of which is violating new rules. For example, a visualization vio-
lating the rule that x-axis and y-axis cannot perform count aggregation
simultaneously has two possible actions, removing count aggregation
from the x-axis or y-axis. However, suppose the channel where the
aggregation is removed happens to have no declared data field. A newly
violated rule will then derive that an encoding channel should declare
the data field or use count aggregation.

reward−(a) =
∣Ri+1−Ri∣

∣Ri+1∣
(2)

In this case, we punish the action a by the proportion discrepancy
between Ri+1 and Ri to show the new violated rules caused by it. Hence,
the overall reward of an action a is computed by subtracting its input
from its side effect. To concentrate on the positive effect of an action,
we set the default weight w = 0.05 to tolerate the side effects brought
by an action.

reward(a) = reward+(a)−w× reward−(a) (3)

When making corrections, actions modify visualizations in different
ways. The transition cost for the action, adapted from GraphScape [29],
is defined to model the changes between visualization Vi and Vi+1
resulting from the action. If multiple actions can solve an error in the
visualization, then the action with the lowest transition cost is the best
solution for the problem.

cost(a) = transition_cost(Vi,Vi+1) (4)

The overall score of an action is measured by its reward and cost. After
trials during experiments, we set the default weight α = 0.8,β = 0.2 to
encourage the following algorithm to pay more attention to the benefits
of actions:

score(a) = α × reward(a)−β ×cost(a) (5)

4.2.3 Optimization Algorithm
After calculating the scores of all candidate actions for rectifying a
given visualization, the next problem to consider is which sequence
and combination of actions can fix the errors with optimal scores.

Assume that a visualization has n broken rules r1,r2, . . . ,rn. Each
rule ri has mi candidate actions ai,1,ai,2, . . . ,ai,mi , implying that this
rule has mi possible solutions. Meanwhile, each action ai, j has its
corresponding score calculated by Formula 5. In the algorithm, we
set the candidate action ai, j as a binary variable to indicate whether to
select it eventually.

Therefore, our problem can be converted into a Binary Integer Pro-
gramming(BIP) problem as:

maximize
n
∑

i

mi

∑
j

score(ai, j)×ai, j (6a)

subject to
mi

∑
j=1

ai, j = 1, i ∈ {1, . . . ,n} (6b)

ai, j = ax,y, if ai, j and ax,y are equivalent actions (6c)

ai, j ∈ {0,1},
i ∈ {1, . . . ,n}
j∈ {1, . . . ,mi}

(6d)
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Algorithm 1: Update Candidate Actions of Each Rule
Input :action α , original violated rulesetRi, violated ruleset

Ri+1 after performing action α , candidate actions A
of each rule

Output :updated A
/* Traverse each rule r that action α has solved */

1 for r in Ri−Ri+1 do
/* Retrieve candidate action list of rule r */

2 A← A(r);
3 if α /∈ A then
4 update A by adding α in A;
5 end
6 end
7 return A;

The above programming objective is to maximize the accumulative
score of all candidate actions taken to fix the flawed visualization. To
prevent redundant operations, Constraints 6b guarantee that one rule is
fixed by only one of its candidate actions; therefore, the sum of the as-
signed value of actions from one rule can only be one. Since each rule’s
candidate actions are defined respectively as mentioned in Sec. 4.2.1,
there may be equivalent actions in different rules, that is, actions with
identical names (e.g., REMOVE_AGGREGATE) performing in the
same encoding (e.g., x). Constraints 6c ensure that any two equivalent
candidate actions selected by different rules should be assigned with
the same value, i.e., picking up identical actions simultaneously or
discarding both. It is used to eliminate situations where a rule r2 uses a
different solution when the problem could have been solved by using
the adopted action of another rule r1. Constraints 6d restrict values of
all actions ai, j to be either 0 or 1, indicating the status of not being
selected or being selected respectively. Hence, the objective function 6a
is determined solely by the scores of the adopted actions.

By providing a list of candidate actions, we address the above BIP
problem by finding the optimal action set with the highest accumulative
scores. BIP is an NP-Complete problem, whose solution can be found
using the Branch-and-Cut algorithm [41] or various well-established
solvers such as SCIP [3] and CBC [17]. We utilize the Python package
PuLP [36] to solve the BIP problem in our implementation. PuLP
is a widely-used linear programming API for defining problems and
invoking multiple external solvers. We conduct all optimization using
Python 3.7 with PuLP 2.4 with the default CBC solver on a computer
equipped with 2.4 GHz Intel Core i5 and 16GB RAM. All the testing
cases for our problem can be solved within seconds.

The above optimization has a relatively good performance, especially
when all the violated rules in the visualization and their corresponding
candidate actions are independent. However, in some testing cases,
candidate action aα of rule rα helped to fix the issue brought by rule
rβ , which was also solved by action aβ adopted by the optimization
algorithm. When defining each rule’s feasible actions as its possible
solutions, the experts only consider the rule itself, regardless of the
co-occurrence of other rules. Therefore, cases occur when a rule is
solved by a non-predetermined action. To address such an issue, we
update constraints 6b by expanding candidate actions of Rule ri with the
actions of other rules that also contribute to solving ri as described in
Algorithm 1. We then solve the BIP model with the updated constraints.
In the optimization result, no more redundant actions are recommended,
providing users with simple and straightforward fixing suggestions.

Fig. 1 shows four examples of how VizLinter detects issues in the
visualization (shown as Before) and then corrects them (shown as Af-
ter). The data used in the examples are from the sample dataset of
Vega-Lite2. Fig. 1(a) and Fig. 1(b) are built based on the car dataset,
including records of cars and their basic properties. The original visu-
alization of Fig. 1(a-Before) depicts the relationship of Horsepower,
Miles_per_Gallon of cars and their Origin, where the size channel
is not compatible with the nominal data field Origin (I1). VizLinter
rectifies it by changing the size channel to the color channel as shown

2https://vega.github.io/vega-datasets/

in Fig. 1(a-After). One rule of I3 type is violated in Fig. 1(b-Before),
where mark type point is not suitable to depict data with stacking.
Changing the chart type by modifying mark type to bar corrects the
visualization, recommended by VizLinter. Fig. 1(c) and Fig. 1(d) visu-
alize data about daily weather reports from the seattle-weather dataset.
Fig. 1(c) before modification misuses the size channel with the data
field temp_min containing negative values (I1) and performs log trans-
formation incorrectly in the y-axis encoded the data field temp_max
holding negative values (I1). VizLinter removes the log transformation
in the y-axis and substitutes the size channel with the color channel.
For the visualization of Fig. 1(d), both x-axis and y-axis execute count
aggregation. As a result, only a single bar is visualized (I2). VizLin-
ter discards the aggregation on the x-axis to represent the number of
appearances of different weather types.

5 IMPLEMENTATION

Following the framework described above, we develop a Python pack-
age, vega-lite-linter3, which embeds a function lint() to detect
errors in Vega-Lite syntax and a function fix() to provide the opti-
mal solutions with the fewest steps. By automatically detecting and
resolving errors, vega-lite-linter enables visualization developers
to build accurate charts quickly in Python. Meanwhile, fix() provides
alternative actions that can resolve each rule and ranks them in the
order of scores calculated by Formula 5. Users can refer to this action
list and choose the solutions to fulfill their own needs.

Based on the above package, we then create a web prototype4 with
the Python backend, as shown in Fig. 3, so that it is easily accessible
to any Vega-Lite developer to build and validate visualizations. We
customize the interface to better serve the framework, referring to the
original Vega-Lite Online Editor [44]. In addition to the basic code
editing panel and chart render panel, we integrate a prompt panel for
the linting and fixing functions of VizLinter as shown in Fig. 3(d).
When clicking the “Inspect Specs” button, any violated rules of the
current visualization specification will be shown. Users can correct
the specification on their own according to the description of violated
rules or check our suggested actions by clicking the “Suggest Revision”
button. Users can click the “Preview” button to preview the automatic
modification result. The corresponding revised specification will show
up in the code panel. “Accept” and “Reject” buttons are provided for
users to approve then apply or reject the revisions. Meanwhile, the
chart panel will render the visualization with the revised specification.

6 EVALUATION

6.1 User Study
The user study examined the effectiveness of the proposed framework.
Specifically, we invited the participants to use VizLinter and asked
whether they agreed with the issues identified by VizLinter and the
corresponding solutions. After the study, we analyzed and discussed
both the quantitative and qualitative results.

6.1.1 Participants

We invited 20 participants with visualization experience to take part in
our study. Twelve of them are from a technology and financial services
company (four females and eight males), whose daily work involves
developing visualizations with business intelligence tools. The other 8
participants are visualization researchers (six females and two males).
The participants’ ages range from 23 to 30 (M = 25.6,SD = 2.0).

6.1.2 Preparation

We prepared 15 flawed visualizations in Vega-Lite JSON format using
the three sample datasets from Vega-lite, including cars, airports, and
seattle-weather. Among these visualizations, five included one error,
five two errors, and the rest contained three errors. There were 25
distinct rules involved in these cases, covering 61% of those in our
framework’s rule base.

3http://vegalite-linter.idvxlab.com/
4http://vizlinter.idvxlab.com/
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Fig. 3. The interface of VizLinter’s web prototype consists of four views: (a) the code editor with highlighted differences from the original Vega-Lite
JSON, (b) the optimized chart after revision, (c) the original chart before revision, and (d) the toggles (and detailed messages) of the linter, the fixer
and its modification preview.

We developed a user study system adapted from the VizLinter proto-
type, whose interface was split into two panels to enable direct compar-
isons. The left panel presented the original Vega-Lite specification with
flawed visualization in a read-only mode. The editable code panel on
the right was provided for participants to revise and edit on their own,
with the corresponding visualization rendered simultaneously. After
participants finished revising each question, they were encouraged to
click “Inspect Specs” and “Suggest Revision” to view the linter de-
tected violations and the fixer’s suggestion by VizLinter. If participants
agreed on the suggestions, they could click “Accept Suggestion” to
apply the advised actions on the original visualization automatically.
After accepting the fixer’s suggestion, participants were still allowed to
edit the revised visualization further.

6.1.3 Procedure
The study started with a twenty-minute training session about Vega-
Lite grammars. We also introduced the four categories of common
issues (I1 ∼ I4) within visualizations and a demo case of the upcoming
tasks. To verify they understood the instructions, we asked them to
try the test questions and answered their questions regarding the user
study. Each participant was then given 15 flawed visualizations with the
original Vega-Lite specifications. The participants were asked to find
out the errors and fix them according to their visualization knowledge
and experience. Their revisions in the Vega-Lite specifications were
highlighted in green on the editable code panel, and the mutated lines
in the original specification were highlighted in red on the original
code panel. When the participants completed the task or felt stuck,
they were asked to use the linter and the fixer functions of our system.
Two questions were then asked: (1) whether they acknowledged the
detected errors by the linter and the proposed solutions by the fixer,
and (2) whether they would like to make further edits on the improved
chart. After each participant finished all the tasks, we conducted a brief
interview to collect feedback on general user experience, effectiveness,
and suggestions for our VizLinter framework.

6.2 Analysis & Results
We obtained participants’ revisions and their acceptance decisions for
each suggestion provided by VizLinter, as well as their completion time
of each question and the correction rate. We first analyzed the effec-
tiveness and efficiency of our framework by computing the completion

time, the correction rate, and the acceptance rate. Then, we summarized
their feedback from interviews to further evaluate the prototype system.

6.2.1 Quantitative Analysis
Completion Time. It took the participants 97.7 seconds on average

to find and fix errors in each visualization (SD = 28.1). The correspond-
ing mean completion time for correction of the different number of
errors (one, two, and three) in the visualization was 101.3 seconds
(SD = 23.0), 93.8 seconds (SD = 27.9), and 98.1 seconds (SD = 32.1),
respectively. Contrary to our expectations, the error fixing time did not
increase with the number of errors alone. Instead, it was related to the
difficulty of figuring out solutions and the complexity of manipulating
the specification as well. For example, adding a new encoding channel
resulted in more steps than simply modifying the aggregation function
within an encoding.

Correction Rate. We inspected the edited specifications and
recorded the number of remaining issues after user revision to cal-
culate the correction rate. The average correction for all the questions
was 77% (SD = 19.7%).We also calculated the average correction rate
of four types of common issues. Rules related to issues within each
encoding channel (I1) had a 75.2% (SD = 22.7%) correction rate, while
the average correction rate of those related to issues across multiple
encoding channels (I2) was 70.8% (SD = 20.8%). Rules related to
issues between encoding channels and marks (I3) gained an average
correction rate of 82.5% (SD = 14.4%), and typo issues (I4) reached
90% (SD = 5%) in average correction rate. The latter two types of er-
rors in VizLinter seemed easier to resolve than the first two, potentially
because some details inside encoding channels were more difficult to
be noticed or fixed.

We summarized some cases that the participants failed to correct
and analyzed their causes. A typical case is when participants did not
notice the error and could not figure out feasible solutions based on
their knowledge. For example, Question 2 was corrected by only four
participants, where a rule “Use at most 20 categorical colors in the
visualization” was violated. Some participants did not recognize this
problem due to unawareness of the corresponding design principle or
habitual neglect of color overuse in their daily practice. While some
participants noticed this error, they still failed to resolve it. This is due
to the difficulty of manipulating encoding channels, as optimizing color
encoding is also an important research topic for effective visualization
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Fig. 4. One case from the user study: (a) the original visualization with errors; (b) the suggested modification result made by VizLinter; (c),(d),(e),(f)
four modificated results by different participants.

design [56]. Another rule, “Channel size is not suitable for data with
negative values,” involved in Question 8 and Question 14, also led to
low correction rates because only some participants realized that it was
illegal to encode size channel for negative data.

Among the rules embedded in VizLinter, some violations do not
intervene with visualization rendering due to built-in exception han-
dling of Vega and Vega-Lite. One example is shown in Fig. 3, where
two rules “use log scale with non-discrete data” and “use valid ag-
gregation, including count, mean, min, etc.” were violated, but the
visualization rendering was not affected by the invalid log scale. Such
errors could only be found in the codes and sometimes were ignored
by the participants. We believe that specifications with unnecessary
declarations would be error-prone in creating visualizations. Hence,
VizLinter can facilitate users to identify errors that are not obviously
reflected in the rendered visualizations.

Acceptance Rate. The average acceptance rate was 90% (SD =

14.2%), indicating that most of the suggestions were adopted. For those
recommended solutions with a low acceptance rate, there were four
types of scenarios. First, some violated rules were questioned by a few
participants. For example, some participants disagreed with the rule
requiring the y-axis to start from zero in bar charts. Consequently, no
action was taken for this violation. Second, after comparing the revi-
sion by VizLinter and by themselves, some participants favored their
own revisions. For example, one case shown in Fig. 4(a) involved two
violated rules: “Mark bar, tick, line, and area require some continuous
variables on x- or y-axis” and “Use both binning and aggregation on
the data at the same time is illegal.” VizLinter’s one-step fixer sugges-
tion was to remove the bin operation on the y-axis shown in Fig. 4(b).
While some participants made the same choice as VizLinter, others
attempted different solutions and rejected the suggestion provided by
VizLinter. A common alternative was to remove the bin operation
of both x- and y-axis and to change the mark type from bar to line
(Fig. 4(c)) or point (Fig. 4(d)), then to discard the aggregation on the
y-axis to depict the distribution (Fig. 4(e)). Another interesting result
from one developer was to ignore the former rule and only remove the
aggregation on the x-axis, as shown in Fig. 4(f). “I did see such kind
of chart at work,” explained the participant. For the same visualiza-
tion with flaws, VizLinter and the participants sometimes gave different
solutions for revising the specification to correct the chart. Since the par-
ticipants’ revisions are influenced by their preferences in visualization,
it is difficult to evaluate these subjective choices. However, in future
studies, it might be possible to assess the revisions based on design
considerations such as aesthetics. Third, some recommended actions
were regarded as neglecting user intents, therefore rejected by some

participants. For example, in Question 12, the encoding specification
broke three rules by binning and aggregating simultaneously on nomi-
nal data: “Only use binning on quantitative or ordinal data,” “Nominal
data cannot be aggregated,” and “Use both binning and aggregation
on the data at the same time is illegal.” The fixer recommended RE-
MOVE_AGGREGATE and CHANGE_FIELD to correct the violations.
On the contrary, the participants took the REMOVE_AGGREGATE
and REMOVE_BIN actions to fix the errors to avoid changing the orig-
inal data mapping. However, this combination broke the framework’s
constraint that only one candidate action for each rule could be selected
since REMOVE_AGGREGATE and REMOVE_BIN were both candi-
dates for the rule “Use both binning and aggregation on the data at the
same time is illegal.” This case indicates one limitation of VizLinter as
it takes only one candidate action for a single rule other than combina-
tional actions. The last cause for rejection was that some participants
believed there were other solutions outside of the action scope to fix
the problem. For example, the suggested revision for Question 2 men-
tioned above was to remove the whole color encoding since it was not
suitable to describe the nominal data over 20 categories. Though it was
the best option within the current scope, some participants argued the
chart after applying this action was still not good enough, even if it did
meet the basic design principles, “I expect another chart type or more
aggregation on the color channel instead of deleting it.”

After reviewing the edited specifications, we discovered new errors
after human revisions. While some revisions partially or fully correct
the original problems, new errors were introduced into the visualiza-
tions. Twenty-three of all the 300 chart modifications (15 questions×
20 participants) violated rules that did not appear in the original prob-
lems. This result illustrates our VizLinter framework’s advantage over
manual adjustments in that it prevents new problems after modifications
to the original specifications.

6.2.2 Qualitative Analysis
To further evaluate the usability of VizLinter, we interviewed the par-
ticipants after the completion of all the tasks.

Overall Performance. All the participants agreed that VizLinter
was helpful as it could automatically find errors in visualizations and
provide suggestions to fix them. One participant commented, “for those
who are not familiar with the visualization guidelines, it is challenging
to make a legitimate visualization on their own. Tools as VizLinter
would really help a lot.” In terms of efficiency, all the participants
responded that VizLinter saved a lot of time and made it possible to
revise a chart with a single click. They appreciated its efficiency and
commented, “this really helps me save time, especially when I attempt
to create charts with unfamiliar datasets.”

8



© 2021 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

Instructive Value. Some participants mentioned that VizLinter
could help quickly learn visual design guidelines during the linting
and fixing process. One participant said, “when I employ this tool, I
can pick up a lot of visualization principles which I used to neglect.”
Another participant noted, “this tool expands my ideas, helps me think
out of the box and offers some options for modification.”

Suggestions. In spite of the above positive feedback, we also
summarize and discuss the suggestions from the participants.
• Consider user intent. Recommended solutions for visualizations by

VizLinter usually result in minimal changes, but they do not always
match users’ expectations. When the number of revision actions is
not a concern, users often have different ideas for making corrections.
More than half of the participants pointed out that user intent should
be considered. One participant said, “I would like to see the tool
taking more user intentions into account and suggest more revision
options to choose from.” Another participant suggested inferring
user intents from the initial chart with errors or user modifications.

• Consider semantic meaning. Some participants expected a more
intelligent tool that can understand the semantics of the data field
to better revise the chart. One participant mentioned, “I found that
VizLinter cannot detect whether the semantics in the chart is correct.
It would be better if the tool could provide more revision suggestions
based on the semantic meaning of data.”

• Add more visual principles. Some participants suggested that more
rules could be integrated into VizLinter. For example, rules to detect
missing values or outliers can be added to ensure the validity of the
rendered visualization. Rules regarding visual aesthetics are also
desired, “some visual guidelines on aesthetics could be added to
help make the charts more visually pleasing.”

7 DISCUSSION

In this section, we discuss the potential use scenarios of the VizLinter
framework, as well as current limitations to guide future research.

7.1 Potential Use Scenarios

VizLinter for other grammars. In this work, we utilize Vega-Lite as
the visualization specification syntax. In the future work, VizLinter
can incorporate other popular visualization grammars such as D3.js,
ggplot2, and Matplotlib. One way of doing so is to translate onward-
and-backward between Vega-Lite and other specification languages.
Another solution is to implement various versions of VizLinter re-
spectively to suit different grammars. In practice, a BI tool with over
100,000 users for the tech company Ant Group has already adapted
VizLinter into its visualization library in Javascript5 and configured its
internal design guidelines into the linter to meet user needs. This case
proves the adaptability of VizLinter in other programming languages.

VizLinter in BI tools. The framework of VizLinter can be applied
in business intelligent tools. Although most BI tools provide drag-and-
drop interactions for users to build visualizations without coding, some
wrong actions may affect the correct representation of the information,
such as mapping data to an inappropriate channel or applying the
wrong data transformation. Embedding VizLinter in BI tools could save
time for digging into design guidelines, which is especially handy for
inexperienced users who need to create visualizations quickly. The BI
tool mentioned above has received positive feedback in practice, which
enables users to find out optimal configurations quickly. Furthermore,
VizLinter can serve as a collaborative visualization design system,
ensuring that various visualizations built by different users in multiple
views are consistent and compatible [42]. For example, linting tools
could remind users to pay attention to set margins or encode with
specific color palettes following the homogeneous design guidelines.

VizLinter for education. During the interview, many participants
felt surprised that VizLinter helped them recognize design guidelines
of visualization, some of which were overlooked occasionally. Conse-
quently, one of the potential applications of VizLinter is an auxiliary
teaching tool for visualization education. Novices could use VizLinter

5https://ava.antv.vision/en/docs/guide/chart-linter/intro

to verify whether the visualizations they create violate any design guide-
lines. During the trial-and-error process, one can obtain visualization
knowledge gradually, which also echos the pedagogical value of ES-
Lint [52]. VizLinter can be valuable for studying visualization design
guidelines, while instructors could also benefit from the automatically
linting function to make quick judgment when checking assignments.

7.2 Limitations and Future Work
We summarize several limitations mentioned during interviews and
found in the design and implementation process and propose future
work directions.

Explain the violated rules in more expressive ways. Currently, vio-
lated rules detected by the linter are only displayed in plain text. When
interviewing the participants about the functionalities of VizLinter,
more details about the rules were reported as desired, such as in-depth
descriptions and graphical demonstration of the rules. In the future, it is
necessary to explain each rule in more detail, including complete doc-
umentation and examples of typical documents and don’ts illustrated
with code and graphics.

Extend the coverage of rule categories. All the four types of rules
covered in VizLinter focus on basic construction errors of visualizations.
In the current stage, guidelines regarding perceptual expressiveness
or visual encoding effectiveness have not been considered. Due to
subjective considerations, there is no clear right or wrong judgment
for such errors. Hence, more pilot studies should be conducted before
applying subjective guidelines to VizLinter. In the adapted version for
the tech company mentioned earlier, some soft rules configured by the
domain experts were applied. In the next step, we plan to collect and
evaluate different categories of rules, covering expressiveness, aesthetic
or stylistic issues, to enrich the capability of VizLinter.

Enrich system configurations and user interaction. The current de-
sign of the framework restrains the capability of error handling to the
principles included in the rule base. However, in practice, it can be
more helpful if the rule base allows extension. Therefore, in the next
step, we consider making the rules user-configurable so that VizLinter
can fit in different scenarios. One implementation of VizLinter is the
web editor with linting and fixing functions, where limited interactions
were provided. It is not intuitive enough for users to refer each rule to
its corresponding coding snippets when the broken rules are listed in a
separate panel. How to present the errors and the linkage among rules,
codes, and visualization will be one of the future works of VizLinter.

Employ more state-of-art research to resolve performance issues.
Currently, the scopes of design rules and actions in VizLinter are
relatively small, where input cases can be solved within seconds. It is
undeniable that, with the progress of development, the ever-growing
rule base and action space would increase the execution time of
VizLinter. Keep improving the framework for better performance
utilizing state-or-art research [15, 18, 38] is worth further studies.

8 CONCLUSION

We present VizLinter, a framework for automatically detecting flaws
in visualizations and suggesting revisions, consisting of a visualiza-
tion linter and a visualization fixer. The visualization linter employs
design guidelines collected from prior research and incorporates An-
swer Set Programming to identify issues of the input visualizations.
The visualization fixer resolves the detected violations by the linter
and automatically suggests revisions by formulating the problem as
a binary integer programming problem. A prototype of VizLinter is
implemented as an online Vega-Lite editor, showing how developers
can use VizLinter to create visualization without flaws. An in-lab user
study was also conducted to evaluate the effectiveness and efficiency
of VizLinter. The results showed that VizLinter could help users identi-
fying and fixing errors. In future work, we plan to extend the current
framework with larger coverage of rules, more system configurations
and user interactions, and to employ it in broader application scenarios.
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