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Abstract The increasing availability of spatiotemporal data provides unprecedented opportunities for
understanding the structure of an urban area in terms of people’s activity pattern and how they form the
latent regions over time. However, existing solutions are limited in their capacity of capturing the evolu-
tionary patterns of dynamic latent regions within urban context. In this work, we introduce an interactive
visual analysis approach, EcoLens, that allows analysts to progressively explore and analyze the complex
dynamic segmentation patterns of a city using traffic data. We propose an extended nonnegative matrix
factorization-based algorithm smoothed over both spatial and temporal dimensions to capture the spa-
tiotemporal dynamics of the city. The algorithm also ensures the orthogonality of its result to facilitate the
interpretation of different patterns. A suite of visualizations is designed to illustrate the dynamics of city
segmentation and the corresponding interactions are added to support the exploration of the segmentation
patterns over time. We evaluate the effectiveness of our system via case studies using a real-world dataset
and a qualitative interview with the domain expert.

Keywords Visual analysis � Urban segmentation � Matrix factorization � Traffic data

1 Introduction

The rapid development of urbanization during the past decades has significantly improved people’s life.
Tremendous efforts have been put on reasonably and optimally segmenting the city into functional regions

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s12650-020-00707-1) contains
supplementary material, which is available to authorized users.

Z. Jin � N. Cao � Y. Shi (&)
iDVx Lab, Tongji University, Shanghai, China
E-mail: yangshi.idvx@gmail.com

Z. Jin
E-mail: zcjin.idvx@gmail.com

N. Cao
E-mail: nan.cao@gmail.com

W. Wu
Siemens Ltd., Beijing, China
E-mail: wenchao.wu@siemens.com

Y. Wu
Zhejiang University, Hangzhou, China
E-mail: ycwu@zju.edu.cn

J Vis
https://doi.org/10.1007/s12650-020-00707-1

http://orcid.org/0000-0002-1065-4038
https://doi.org/10.1007/s12650-020-00707-1
http://crossmark.crossref.org/dialog/?doi=10.1007/s12650-020-00707-1&amp;domain=pdf
https://doi.org/10.1007/s12650-020-00707-1


to serve various needs for its citizens and best utilize the limited city resource. However, functional regions
are typically defined based on a static boundary. This segmentation strategy rarely reflects an individual’s
day-to-day experience of the space in which they live and visit for a variety of purposes. Also, the use of
these static boundaries has limited not only the city’s ability to assess the dynamic processes that shape its
urban areas, but also its opportunity to improve the city management with smart-city services (Su et al.
2011; Bakıcı et al. 2013). Therefore, a better understanding of the structure of an urban area in terms of
people’s activity patterns and how these patterns form the latent regions over time can provide profound
insights for effective applications in urban planning and business intelligence.

The increasing availability of human mobility data generated within an urban context opens up
unprecedented opportunities to better understand an urban area. Prior research studied mobility patterns in
the urban context (Zheng et al. 2016a), and most of them focus on identifying predefined events or features
in data (e.g., Wu et al. 2016; Zheng et al. 2016b). However, these approaches were limited in capturing the
dynamic formation of regions in an urban area. There have been some attempts in developing automatic
algorithms (Wang et al. 2014; Yuan et al. 2015) to extract latent regions in an urban area. However, analysts
found it difficult to understand and interpret the result or combine their domain knowledge with real-world
applications. Hence, we propose an analysis technique combined with human supervision to explore the
ecological regions (i.e., dynamic latent regions) in urban context that reflect the city dwellers’ dynamic
moving patterns and capture how they share similar moving behavior during a short period of time. Visual
analysis provides an effective way to involve human knowledge in a data exploration process by applying
their perceptual abilities to the target dataset and leveraging their domain knowledge to guide the explo-
ration. The state-of-the-art approach, MobiSeg (Wu et al. 2017), enables interactive exploration of people’s
movement to segment an urban area into regions while neglecting the continuity of people’s patterns in
either spatial or temporal domain. Thus, its approach cannot be directly employed to illustrate the evolu-
tionary patterns of dynamic latent regions in the urban context.

To address the above issues, this work presents an interactive visual analysis approach, EcoLens, which
allows analysts to progressively explore and analyze the complex evolutionary patterns of latent regions. To
this end, we proposed a novel nonnegative matrix factorization-based (NMF-based) algorithm for dynamic
latent region detection based on people’s mobility patterns, which takes the temporal and spatial smoothness
into consideration. Using the NMF-based algorithm, a set of visualizations was designed to illustrate the
extracted regions within spatial and temporal context. To evaluate the effectiveness of the proposed algo-
rithm, we conducted a comparative analysis. We demonstrated the performance of EcoLens through case
studies using a large-scale real-world dataset, which consists of over 450,000 taxi trips collected in Man-
hattan from July 2014 to December 2014. We also reported the qualitative feedback from an expert in the
field of urban planning regarding the usefulness of EcoLens. The results indicated that our system is capable
of identifying the mobility patterns to form latent regions, uncovering the dynamics of latent regions, and
interpreting the mobility patterns of regions.

The major contributions of this paper are summarized as follows:

• System We designed a novel visual analytic system, EcoLens, to help explore the dynamic segmentation
patterns of a city using large-scale traffic datasets.

• Algorithm We introduced a novel NMF-based algorithm smoothed over both spatial and temporal
dimensions to capture the spatiotemporal dynamics of the city. Orthogonality of the latent patterns is
guaranteed to facilitate the interpretation of different patterns.

• Evaluation We evaluated the effectiveness of the proposed algorithm and the EcoLens system via
comparative analysis, case studies, and a domain expert interview.

2 Related work

Our work builds on prior research work on urban segmentation and visualization of mobility patterns.

2.1 Urban segmentation

Urban segmentation has been studied extensively for years in the fields of urban planning and geographic
information system (GIS). Remote sensing data (e.g., images) are frequently used (Deng et al. 2009; Seto
and Fragkias 2005). These techniques recognized different regions by calculating visual differences based
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on satellite images. The results are usually limited by the low resolution and the missing of context details
especially in regions with complicated geographic conditions. To address this issue, more and more research
attention has been put on identifying functional urban regions based on people’s daily activity patterns
(Wang et al. 2014; Wu et al. 2017; Yuan et al. 2015). As early as the 1970s, Goddard (1970) analytically
differentiated functional regions in central London based on taxi flows. Following this work, Yuan et al.
(2015) recently employs latent Dirichlet allocation (LDA), a generative statistical model that was originally
designed for text analysis, to identify the latent functional regions in a city based on people’s mobility
patterns. Kraft and Marada (2017) applied the local minimum and maximum values of transport intensities
to delimit functional regions. Demšar et al. (2017) applied principal components analysis (PCA) to taxi
flows for obtaining functional regions. Zhang et al. (2017) analyzed the patterns of the urban roads based on
taxi GPS data. Wakamiya et al. (2015) applied nonnegative matrix factorization (NMF) to analyze urban
area characterization based on Twitter data. When compared to these techniques which produce static
segmentation results, our work focuses on revealing the regional dynamics. The algorithms and visualization
designs are thus introduced.

Despite the aforementioned analysis driven methods, MobiSeg (Wu et al. 2017) is the first visual
analysis system designed for interactive region segmentation in the urban context. As the most relevant
work, MobiSeg also employed NMF for urban segmentation and introduced the visual interface to facilitate
results interpretation and interactive latent region analysis, comparison, and exploration. When compared to
MobiSeg, our work focuses on analyzing and revealing temporal patterns of the dynamic transition of the
latent regions. To this end, we introduce a dynamic NMF algorithm that analyzes and smooths the transition
over both temporal and spatial domains, which produces more continuous and interpretable results when
compared to the results without smoothing. In addition, to facilitate the tracking of regional transition
patterns and the change of the regional functions, we also introduce a pattern tracking algorithm based on a
Sankey diagram design. Most importantly, we conduct case studies on real data which reveal interesting
findings that can hardly be detected in MobiSeg.

2.2 Visualization of mobility patterns

Visual analysis of latent urban regions falls into the general topic of analyzing mobility patterns. Efforts
have been devoted to developing visualization methods to meet the needs of analyzing and understanding
mobility patterns within the urban context [see Zheng et al. (2016a) for a comprehensive survey]. Our goal
in this work is to develop a visual analysis approach to present the evolution of mobility patterns, thus
helping analysts explore and understand dynamic latent regions within the urban context. When presenting
evolving mobility patterns, time and movement are two fundamental components of telling a full story and
can help structure the information. Therefore, in this part, among the vast amount of visualization tech-
niques, we focus on the visualization of time and movement which are the most relevant to our work.

There are various ways of mapping time to visual variables (Aigner et al. 2011; Zhao et al. 2019).
Within an urban context, the axis-based design is one of the most popular methods (Wu et al. 2014; Zheng
et al. 2016b) due to its simplicity and interpretability. Besides, temporal information can also be conveyed
through a dynamic representation, resulting in visualizations that change over time automatically (i.e.,
animation), which is a popular design choice for visualizing the dynamics of a city (Kloeckl et al. 2011;
Rosling 2009). However, as demonstrated by Robertson et al. (2008), the animation techniques are gen-
erally not effective for analysis tasks due to the limitation of human short-term memory. We employ both
designs in our work; a Sankey diagram is used to provide an overview of the regional transition trend while
an animated map view to illustrate the dynamic change of regions in spatial context.

When visualizing movements, there are three major types of techniques, including direct depiction,
summarization, and pattern extraction techniques (Andrienko et al. 2013). Direct depiction techniques
(Tominski et al. 2012) present paths of movement directly. Summarization techniques (Wu et al. 2016;
Andrienko et al. 2017) conduct statistical calculations of movement and present the result based on divided
spatial or temporal intervals. Pattern extraction techniques (Zheng et al. 2016b) enable an interactive
discovery and analysis of various movement patterns. In this paper, we integrate different types of tech-
niques and enhance them with new features. With EcoLens, analysts could observe the evolution of an area
frame by frame and explore its corresponding mobility patterns interactively.
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3 System overview

We designed EcoLens for revealing the dynamics of latent regions in which people share similar temporal
mobility patterns. Following a user-centric design process, we worked closely with a domain expert who is a
researcher at the institute of urban planning and design in China. Regular meetings with the expert were
scheduled and lasted for about six months to help us understand the requirements and refine the prototype.
During the meetings, we focused on discussing what kinds of dynamic patterns need to be captured and how
to reveal and interpret them within the urban context. As a result, we found that people’s mobility pattern is
the most critical feature to capture as it is directly relevant to their daily behaviors and thus implies the
functionality of a region. For example, during the weekdays, people tend to travel from home to the office in
the morning. This mobility pattern suggests potential residential areas and business areas. More specifically,
the desired system should satisfy the following requirements:

R1 Identifying the mobility patterns occurred in different areas to form latent regions for investigation
The system should be able to differentiate mobility patterns occurred in various urban areas based on
people’s collective daily moving behaviors that are extracted from a large dataset. Areas with similar
patterns should be further grouped into latent regions to help imply the corresponding regional
functionality within the urban context. To support the efficient identification and interpretation of the
latent regions, the visualization should present the segmentation result of the latent regions with
geographic information, the mobility features of the patterns, and the evolution of latent regions within
the temporal context.

R2 Capturing the dynamics of the latent regions over time to uncover regular or irregular regional
transition patterns The system should be able to reveal the dynamic change of the spatial mobility
patterns and the corresponding change of the latent regions. It is necessary to provide a high-level
summarization of the overall change of the city over time. This will help analysts identify the regular
changes due to people’s regular daily behaviors and thus help them identify those irregular ones due to
certain events.

R3 Facilitating the regional pattern comparison, exploration, inspection, and interpretation The system
should also be able to intuitively illustrate the aforementioned patterns and the corresponding changes
of the latent regions in the rich urban context so that analysts can easily explore, compare, and
understand the patterns and their changes to make a proper conclusion as well as a correct decision.
The visualization should be able to reveal the raw traffic data inside each latent region and provide the
corresponding statistical information to help with the interpretation, validation, and comparison of the
region segmentation results.

According to the design requirements, we develop EcoLens, an interactive visualization system for
analyzing the evolution patterns of latent regions within the urban context. The system consists of three
primary modules, including the prepossessing module, analysis module, and visualization module (Fig. 1).
The prepossessing module is designed to clean the raw data (i.e., the taxi-trips in our case) and transform
them into the matrix time series with desired features. This whole prepossessing step runs in parallel on a
Spark cluster, and the processed data are stored in MongoDB1 for later querying. This module is designed to
extract the collective moving behaviors of people from raw data (R1). The analysis module derives the
latent regions (R1) and the evolution patterns (R2) overtime based on the preprocessed data via nonnegative
matrix factorization. The visualization module presents the analysis results via multiple coordinated views.
These views reveal the evolution of the latent regions and facilitate the interpretation of the corresponding
pattern within each region. Various interactions are provided to support flexible data exploration and result
calibration (R3). In the next, we will describe the details of the analysis and visualization modules in the
following sections.

4 Context preserving dynamic region segmentation

In this section, we introduce the algorithm used in the analysis module that is developed for revealing the
regional dynamics of the traffic evolution patterns inside a focal urban area. The proposed algorithm
leverages the nonnegative matrix factorization (NMF) Lee and Seung (1999) and smooths the change over
both the spatial and the temporal dimensions to facilitate interpretation. The NMF algorithm is used to

1 https://www.mongodb.com/.
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decompose a sparse matrix into the product of two nonnegative matrices. In the context of urban,
decomposing the original feature matrix of transportation can obtain two matrices that capture the semantics
of latent traffic patterns and the spatial distribution of these latent patterns, respectively. In addition, unlike
SVD which may produce negative values in the analysis results, our method guarantees nonnegative values,
which are meaningful and interpretable. We first describe the data and the corresponding features used in
our prototype system, followed by the algorithm details as well as the design rationales.

4.1 Feature extraction

Our prototype system employs the public New York City taxi trip dataset2 to capture the change of regional
mobility patterns. To this end, we divided the Manhattan area, our focal investigation region, into N grids
(N ¼ 300 with the granularity of 0:005 longitude � 0:005 latitude in our implementation) and counted the
number of incoming and outgoing trips in each grid as the grid’s features for later analysis. Each grid i is
described by a 2N-dimensional feature vector with the field p in the vector indicates the number of trips from
the ith grid to the pth grid. Therefore, the first N fields in the vector indicate the number of outgoing trips
from grid i to the rest N � 1 grids and the last N fields indicate the number of incoming trips from other grids
to the ith grid. In this way, during a given time interval t (t ¼ 2 hours in our implementation), a 2N � N
feature matrix Xt can be obtained, which captures the mobility patterns during t. The matrices from different
intervals thus formed a feature matrix time series. This matrix series characterizes mobility patterns in each
region over time and is used for the later analysis.

4.2 Dynamic region segmentation

We propose a context preserving algorithm based on nonnegative matrix factorization (NMF) to analyze the
regional dynamics of the taxi trips captured in the aforementioned feature matrix time series. The algorithm
optimizes and balances among four carefully designed terms that are formally defined as follows:

Wt;Ht;Mt ¼ argminðjjXt �WtH
T
t jj

2 ð1Þ

þ ajjWt�1 �WtM
T
t jj

2 ð2Þ

þ bjjHt�1 � HtM
T
t jj

2 ð3Þ

þ k
X

i;j

Aijjjhti � htjjj2Þ

s:t: WT
t Wt ¼ I; t ¼ 1; 2; . . .; n;Wt � 0;Ht � 0;Mt � 0

ð4Þ

Pattern extraction The first term is proposed to extract latent mobility patterns from the raw data. It employs
the nonnegative matrix factorization (NMF) to decompose a feature matrix ðXtÞ2N�N into the product of two
nonnegative matrices ðHtÞN�K and ðWtÞ2N�K that, respectively, captures the spatial distribution of the latent

Fig. 1 The system pipeline of EcoLens. Three primary modules, including preprocessing module, analysis module, and
visualization module, support the analysis of evolution patterns of latent regions within the urban context

2 http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml.
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patterns as well as the pattern semantics. Specifically, ðHÞN�K indicates the likelihood of each of the K
patterns occurred in each of the N regions. ðWÞ2N�K shows the probability of a latent pattern having a certain
feature. As shown in Fig. 2, the red column in matrix H shows the likelihood of the patterns occurred in the
first regions and the blue column in matrix W shows the probability of the first pattern having a certain
feature. Here, K is the number of desired latent patterns to be found during the analysis. It is a hyperpa-
rameter usually given by the analyst before the analysis. Note that the number of latent patterns, K, is
usually the prior knowledge provided by the analysts. However, in many real applications, the ground truth
of K is unknown. To address this issue, in our implementation, we employ Mean-Shift, a nonparametric
clustering algorithm (Cheng 1995), to compute the clusters at each timestamp and then use the numbers of
clusters as the values of K for our analysis. Although this approach is heuristic, it provides meaningful
results.

Temporal smoothness The second and the third terms are the regularization terms that ensure the
temporal smoothness of the analysis result. They, respectively, preserve the similarity of Wt and Ht across
different time to eliminate the dramatic sudden change due to the noisy data that may break the overall the
transition trend of the regional mobility patterns. a, b controls the degree of smoothness. Considering the
number of patterns K may vary from time to time, a transition matrix Mt is introduced to connect patterns at
different time intervals together. A element Mt;i;j in Mt implies the probability of a previous pattern i at time
t � 1 transiting to a current pattern j at time t. Thus, WtM

T
t and HtM

T
t should be close to the previous Wt � 1

and Ht � 1 at time t � 1.
Spatial smoothness The fourth term is the spatial smooth regularization term that ensures a region will

share similar mobility patterns with its neighborhood. This design is due to the common understanding and
observation that nearby regions will show similar mobility patterns as the functional area (e.g., CBD area)
may locate across multiple adjacent regions. Here, an adjacency matrix A is introduced with each element
Aij 2 f1; 0g indicates whether or not two regions i and j are adjacent to each other. The pattern differences
(i.e., jjht;i � ht;jjj2) between those adjacent ones are minimized and the degree of the minimization is
controlled by k.

The above optimization problem can be solved based on block coordinate descent (Kim et al. 2014). The
outputs of the algorithm, including the latent patterns Wt, the pattern distribution in different regions Ht, and
the pattern transition probability Mt, are captured at each timestamp t. Based on Ht which indicates the
likelihood of each of the patterns occurred in each of the regions, the regions with the same maximum-
likelihood pattern form a latent region via a clustering analysis. All these produced analysis results are used
for building meaningful visualization views that will be introduced in the next section.

5 Visualization

In this section, we describe the visualization designs that illustrate the analysis results of the spatiotemporal
dynamics of the city. The interface of EcoLens consists of seven views (Fig. 3): (1) the global view that
shows the overview of the segmentation results in the temporal context; (2) the map view that combines the
segmentation results with geographic information, as well as a flow glyph design that illustrates the raw
traffic trip information of the regions; (3) the pattern view and (4) the grid view that present the mobility
feature of each latent region, as well as statistics of the raw information to help validate the mobility pattern;
(5) the distribution view that displays the probability distribution of different mobility patterns over regions;

Fig. 2 Matrix X is decomposed into the product of matrix H and W. The column in HT highlighted in red indicates the
likelihood of the K mobility patterns occurred in the 1st regions. The column in W highlighted in blue shows the probability of
the 1st mobility pattern having a certain feature
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(6) the evolution view that shows the dynamics of the latent regions in the temporal context, and (7) the
snapshot view that allows users to take a snapshot of the segmentation results shown in the map view for
later retrieval and further analysis. These views are interactively linked to illustrate the dynamics of latent
regions generated based on the aforementioned segmentation results.

We employ four color encoding schemes in our design. The first color scheme ranging from light green
to dark blue shows the categorization of segmentation results in the global view (Fig. 3(1)). The second
color scheme is used to encode the segmentation results in the map view (Fig. 3(2)), distribution view
(Fig. 3(5)), and evolution view (Fig. 3(6)). Regions with the same color at a given time range indicates they
share similar mobility patterns over spaces. Regions with the same color across different time range indicate
these regions have a similar pattern changing trend. The third color scheme is used to represent the
difference between the incoming and outgoing traffic flow in the pattern view (Fig. 3(3)) and the glyph in the
map view. The colors ranging from green to yellow, and to red indicate the larger, equal, and smaller
incoming flow when compared to the outgoing flow. We use the fourth color scheme ranging from yellow to
red to indicate the amount of the flow in the grid view (Fig. 3(4)) and the triangular glyph in the evolution
view (Fig. 3(6)).

5.1 Global view

The global view (Fig. 3(1)) provides an overview of the segmentation results in time series whose design is
inspired by van den Elzen et al. (2016). It illustrates the distribution of the overall segmentation results of a
focal area in a feature space. In particular, the segmentation results at different time intervals are sum-
marized and shown as points in the view with the point size indicating the amount of traffic within the
corresponding time period and the color indicating the parts of the day (i.e., dawn, morning, afternoon, and
night). The characteristic of a point, vt, is captured by an N � 2N-dimensional feature vector which is the
vectorization results of the corresponding feature matrix Xt introduced in Sect. 4 as shown in Fig. 4. Here,
N indicates the number of grids and 2N is the number of features of each grid. With the above feature vector,
we illustrate the distribution of the overall segmentation results (i.e., points in the view) in the feature space
via principal component analysis (PCA) Dunteman (1989). These points are further connected by a timeline
from the earliest time to the latest time in the data with the start and end points, respectively, marked with a
red rectangle and red arrow.

Fig. 3 The user interface of EcoLens consists of seven major views: (1) global view, (2) map view, (3) pattern view, (4) grid
view, (5) distribution view, (6) evolution view, and (7) snapshot view
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Figure 3(1) illustrates the visualization results of the aforementioned NYC taxi trip data collected from
the Manhattan area, which forms a periodical circular pattern with each loop in the circle indicates a day that
is segmented into 12 time periods. Within each period, a segmentation is calculated and thus are visualized
as a point in the view. A circular brush tool is also designed in the view to facilitate the selection of a time
range and the corresponding points. The selected points will be expended into details and shown in other
views for exploration and comparison.

5.2 Map view

We overlay the segmentation analysis results on a map to illustrate its spatial context (Fig. 3(2)). In
particular, the equal-sized grids, in which the mobility features are calculated, are visualized in the back-
ground. Each grid i is colored by their primary mobility patterns (i.e., the largest field in the vector Ht½i; :�).
The grids share similar mobility patterns are grouped together into latent regions, and the boundary of the
latent regions is further highlighted by a thicker line.

To summarize and illustrate the raw traffic flows inside each grid, we introduce a novel flow-glyph
design in the map view as shown in Fig. 5. The design of this glyph aims to encode and illustrate three types
of the following information regarding a focal grid: (1) the traffics inside the grid; (2) the exchange of the
traffics between the focal grid and other grids; (3) the statistic of the total amount of traffics related to the
grid. The glyph, as shown in Fig. 5a, follows a circular design that consists of two major components: (1) the
center circle with the size indicating the total amount of relevant traffic flows in the grid, and (2) the outer
ring that summarizes the traffics to or from 72 different directions (5 degrees a direction) with the focal grid
in the center. The number of the flows is visualized as bars (Fig. 5b) and enhanced by a colorful peak with
red indicates outflow and green indicates inflow (Fig. 5c). Intuitively, the outflows are visualized outside the
ring, whereas the inflows are visualized inside the ring.

Fig. 4 The characteristic of point vt is captured by an N � 2N-dimensional feature vector, where N indicates the number of
grids in a region and 2N is the number of features of each grid

Fig. 5 Flow-glyph design. a The center circle and outer ring, respectively, show the amount and direction of traffic flows in the
grid. b These flows are visualized as bars and c enhanced by a colorful peak with red indicates outflow and green indicates
inflow
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5.3 Evolution view

The evolution view illustrates the temporal transition trend of the latent regions, as shown in Fig. 3(6). It
employs a Sankey diagram design in which x-axis indicates the time and the vertical nodes at each
timestamp indicate the latent regions generated at that time. The transitions of the latent regions across
different timestamps are shown by the strips whose thickness indicates the number of raw grids merged into
or split from a latent region. Here, the colors of the strips provide a visual hint, from which an analyzer can
trace the change across different timestamps.

The number of latent regions may vary dramatically over time, thus making the assignment of a proper
color to a node or a strip is a difficult problem. The goal is to find the best color matching so that the colors
of the succeeding nodes and strips can best inherit from the colors of the previous nodes so that users can
easily follow and track the transition trend of the latent regions. We convert the problem into a maximum-
weighted bipartite matching problem by constructing a bipartite graph. In particular, the regions at two
adjacent stages are regarded as the nodes in the graph. We connect a latent region at a previous stage to a
latent region at the succeeding stage if these two regions have overlapped underlying grids. The weight of
the connection is given by the number of overlapped grids. In this way, a maximum-weighted matching
between the regions at two adjacent stages will help find the best inherent colors for the succeeding nodes
from their most relevant nodes at the previous stage. The problem can be optimally solved based on the
Kuhn–Munkres algorithm (Kuhn 1955). It is worth mentioning that in our implementation based on the
NYC taxi trip data, we initially segment the Manhattan into functional regions and assign each region a
color based on the administrative divisions of the city. These initial colors are then used for the color
assignments and matching during the rest of regional transition processes. In Fig. 3(6), the blue vertices are
the latent regions at the previous stage and the green vertices are the latent regions at the current stage. A
blue vertex and a green vertex are connected if they have overlapped grids and the weight of the connection
is given by the number of the overlapped grids. Here, the solution of the maximum weighted matching are
links highlighted in orange.

5.4 Other views

The EcoLens also uses other supportive views to illustrate information details from different perspectives.
Pattern view The pattern view (Fig. 3(3)) shows a list of mobility patterns for each latent region. As

described in Sect. 4, the mobility pattern of a latent region can be presented by a 2N-dimensional feature
vector (a column vector in the matrix Wt). The first N fields in the vector indicate the occurrence probability
of the outgoing trips from this latent region to all the N grids in the urban area, while the last N fields
indicate the occurrence probability of the incoming trips from all the grids to this latent region. To visualize
this feature vector intuitively, we employ a red-to-yellow-to-green color gradient on the heatmap of each
latent region. If the probability that people in a grid enter into the latent region (highlighted via black strokes
in the heatmap) is higher than the probability that the people leave from the latent region to this grid, the
grid in the heatmap will be colored in green. Otherwise, the grid will be colored in red. If both the
probability of outing and incoming trips in a grid are equal to zero, the grid will be filled with no color. For
example, in the heatmap of the highlighted item (Fig. 3(3-II)), most of the grids on the east side of the latent
region are colored in red. This pattern suggests that people in the latent region II are likely to enter into the
east side of this latent region. In the map view, we can observe that the east of latent region II is latent region
I. We further inspect the mobility pattern of latent region I (Fig. 3(3-I)) and find that the grids around latent
region I are colored in green, indicating people in those grids are likely to enter into this latent region.
Therefore, we could infer that people in the latent region II intend to travel to latent region I.

Grid view In the grid view (Fig. 3(4)), the grid view further reveals the detailed mobility patterns of grids
that compose a certain latent region selected in the pattern view. Each item in the grid view consists of
statistic information and a heatmap. In the heatmap, the color encodes the total amount of flow between the
grid and others. The darker the color, the larger the amount.

Distribution view The distribution view (Fig. 3(5)) reveals relationship among mobility patterns and the
regions by visualizing the details of the matrix Ht. Each row vector of the matrix Ht indicates the probability
distribution of the mobility patterns over a certain region. A circle is divided into K (the number of the
mobility patterns derived from Sect. 4) sections equally, so as to build a barycentric coordinate. The
categories of the mobility patterns are illustrated as colored nodes along the boundary of the circle. The
regions are encoded as scattered points in the barycentric coordinate. Each pattern and its corresponding
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points of the regions are assigned with a specific color. The coordinate of the point representing region i is
calculated as follows:

rxi ¼
Xk

j

Ht;i;j � cxj; ryi ¼
Xk

j

Ht;i;j � cyj ð5Þ

where rxi and ryi are x-coordinate and y-coordinate of region i, cxj and cyj are x-coordinate and y-coordinate
of mobility pattern j, and Ht;i;j is the element at row i and column j of matrix Ht.

6 Evaluation

We evaluated the effectiveness of the proposed algorithm and the EcoLens system via comparative analysis,
case studies, and a domain expert interview. Our evaluation is based on a dataset consisting of over 450,000
taxi trips from July 2014 to December 2014 collected from over 50,000 Yellow Cabs in the Manhattan area.
We segmented the city into a web of grids with a granularity of 0:005 lng � 0:005 lat and calculates the
regional features every two-hour to ensures a reasonable computation time and precise preservation of the
traffic patterns.

6.1 Algorithm validation

We validated the effectiveness of the algorithm by estimating the constraints and regularization terms
introduced in our dynamic city segmentation algorithm.

6.1.1 Verification of the temporal smoothness

To verify the effectiveness of the temporal smooth regularization terms (Eq. 4(2, 3)), we compare the
analysis results generated without/with the term in the algorithm as, respectively, shown in Fig. 6a, b.
Generally, the transitions of the latent regions change dramatically in Fig. 6a when compared to the case
shown in Fig. 6b. In particular, the highlighted green strip (i.e., a latent region) in Fig. 6a splits into branches
during the period from 12:00 to 14:00, which are later merged into another latent region shown as the blue
strip in the next stage during the period of 14:00–16:00. The corresponding map view (Fig. 7) provides more
insights into the changes of these latent regions that helped with the validation of the results. In particular,
blue and green regions, respectively, correspond to the above blue and green strips, illustrating the areas
with two different latent patterns. These two areas changed dramatically in Fig. 7a: a subarea, highlighted by
the red box, originally in the green region merged into the blue region. This subarea, according to the map, is
the East Harlem, where schools, residential areas, and parks are located and the traffic patterns are seldom
changed during the non-traffic hours like the period from 12:00 to 16:00. A further investigation of the raw
data verified our guessing; the change is due to a small number of random taxi trips which are the data noise
that affects the analysis result. A slight smooth over temporal dimension addressed this problem (Fig. 7b),
which verified the usefulness of the temporal smooth regularization term.

Using the temporal smoothness can result in missing some outliers caused by emergency events in the
urban. However, the change of the flow data caused by emergencies is more dramatic than that due to
random trips. We use the parameter a to control the degree of temporal smoothness. When analyzing
outliers, the influence of spatial smoothness can be reduced by decreasing the value of a.

6.1.2 Verification of the spatial smoothness

To verify the effects of the regularization term for spatial smoothing (Eq. 4(4)), we compare the analysis
results produced without/with spatial smoothness as shown in Fig. 8a, b, respectively. In this example, the
region highlighted in the red circle is a part of Stuyvesant Town, a small residential area, in which people
suppose to behave similarly. Therefore, the discontinuity of the regional clusters shown in Fig. 8a is most
likely due to the noise of the input data instead of different mobility patterns. This problem has been
eliminated by adding the spatial smoothness regularization term into our algorithm as shown in Fig. 8b.

Using the spatial smoothness can also result in missing outliers in the flow data (e.g., the flow data of
different places in a functional area can be different). However, we mainly focus on discovering latent
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regions, which leads to the hope that the nearby regions in a functional area will share similar mobility
patterns. We use the parameter b to control the degree of spatial smoothness. The functional areas can be
further divided by decreasing the value of b.

6.1.3 Verification of the orthogonality

To estimate the effects of the orthogonality constraint, we also compare the analysis results produced
without/with the constraint as shown in Fig. 9a, b, respectively. Obviously, the patterns shown in Fig. 9b are
more differentiable than the one shown in Fig. 9a. This finding is further verified by the corresponding
correlation matrices shown in Fig. 9(I, II). In these matrices, each column or row indicates a latent pattern. A
cell at the ith row and the jth column indicates the correlation value of the ith and the jth patterns, which is

Fig. 6 The analysis results in the evolution view generated a without and b with the temporal smooth regularization terms

Fig. 7 The analysis results in the map view and pattern view generated a without and b with the temporal smooth
regularization terms
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proportional to the color saturation. Therefore, Fig. 9(II) illustrates the patterns produced by following the
orthogonality constraint are less relevant to each other when compared to the case shown in Fig. 9(I).

6.2 Case study

To further evaluate the usability and usefulness of the EcoLens system, we provide two case studies
demonstrating its capability in analyzing the change of the mobility patterns in Manhattan, NYC.

6.2.1 Evolution exploration

We analyzed the daily evolution of the mobility patterns by comparing the results produced at four different
time intervals on July 9th, 2014, respectively, in the morning, the afternoon, the evening, and at night. The
visualization results are captured in Fig. 10.

As shown in Fig. 10a, most of the grids in the latent region (1) and (3), the residential areas, are in red.
This suggests that these areas have a greater outflow in the morning. In comparison, the regions marked as
(2) and (4) have a greater inflow (shown in green) at the same time, where are the CBD (i.e., Central
Business District) areas in the town. This reveals the mobility pattern of morning traffic hours within
Manhattan. At noon and in the early afternoon (12:00–14:00), as shown in Fig. 10b, the boundary of the
latent regions (1,2,3) largely remains the same as that in the morning. However, the traffic patterns are
dramatically changed as illustrated in the aside heatmap. The yellow color indicates the amount of incoming
and outgoing traffic flows in these regions are similar, which implies people travel around for lunch inside
the nearby regions. We also observed a new region (5), the financial area in the city, split from region (4).
The aside heatmap revealed the reason for this change as the traffics is seldom across these two regions in

Fig. 8 The analysis results in the map view generated a without and b with the spatial smooth regularization terms

Fig. 9 The analysis results in the pattern view generated a without and b with orthogonality constraint. (I) and (II) show the
corresponding correlation matrices of a and b, respectively
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this period of time, thus making them separated from each other. We believe people work in this area such
as the stock dealer will be too busy to leave this area at noon.

Later in the evening (18:00–20:00) as shown in Fig. 10c, the regions (3, 4, 5) are merged together,
forming an area labeled as (3) where people are moving around and the incoming and outgoing traffic flow
are balanced. This is due to some people leaving for home and some of them coming for dinner and fun,
since the area is also served as the entertainment district in the urban area where Broadway and many bars
and restaurants are located. Similar patterns also occur in region (1) and (6). However, the traffic pattern
shown in region (2) changes dramatically when compared to that of an early stage shown in Fig. 10b. It
suggests that people start to leave this area and the traffic spread all over the nearby regions. Fig. 10d
illustrates the traffic pattern from the CBD to the residential areas in the city, which is just opposite to the
patterns shown in Fig. 10a.

6.2.2 Anomaly detection

EcoLens was also used to detect anomalous situations. Fig. 11 illustrates an overview of the mobility
patterns at different timestamp calculated based on people’s daily moving behavior. It generally reveals a
strong periodical pattern through the connected points shown in a circular form, with each circle indicates
the period of a regular weekday. Among all the points connected by the timeline, a point representing the
time interval 22:00–24:00 on July 4th, highlighted in the red circle, is considered to be an outlier as it is laid
out away from other points in the surrounding context that captures the history of the same period of time. A
detailed investigation of this outlier is illustrated in Fig. 12. We believe this abnormal pattern is due to the
change of traffics around the Brooklyn Bridge on July 4th (the Independent day) during the period of
22:00–24:00. Usually, little volume of traffic goes through the bridge at the late night (Fig. 12a). However,
on the Independent day, the fireworks aside the river attract a great number of people which dramatically
increases the amount of traffic flow (Fig. 12b), thus resulting in a different traffic pattern and captured by the
global view of EcoLens system.

6.3 Expert interview

We collected user feedback and comments on the EcoLens system through an in-depth interview with a
domain expert from the institute of urban planning and design in China. We first showed a tutorial that
explains the goal, visual encoding, followed by a demonstration of an example illustrating the evolution
process of an urban area to help the expert get familiar with the system. The expert was asked to explore the
capabilities of our system and analyze the dynamic patterns in the urban area with his domain knowledge.

System Generally, the system impressed the expert. He commented that the results were ‘‘reasonable,’’
and the design of the visualization views was ‘‘intuitive’’ and ‘‘comprehensive.’’ ‘‘We used to analyze the
urban areas based on the statistical information overlaid on top of a map. This system provides us a new
approach to exploring the dynamics of the urban data.,’’ which was considered to be ‘‘novel’’ and ‘‘useful.’’

Fig. 10 The EcoLens system summarizes the daily evolution of the mobility patterns in Manhattan, NYC. The system employs
the map view (left) and region view (right) to, respectively, show the result of urban segmentation and the mobility feature of
each latent region. Four mobility patterns at different time intervals are captured, including a the morning from 8:00 to 10:00,
b the early afternoon from 12:00 to 14:00, c the evening from 18:00 to 20:00, and d the night from 22:00 to 24:00
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Visualization The expert believed that most of the visualizations well supported the design requirements.
For example, when analyzing the evolution of the urban area, the expert compared the results with the urban
planning map and pointed out that ‘‘the areas gather together in different time intervals showing different
patterns. These patterns are meaningful given the functionality (e.g., residential or CBD areas) of the
underlying urban areas.’’ He also believed that the overview is useful as it provided a ‘‘clear periodical
pattern’’ and ‘‘revealed a few outliers that fail to align with others.’’ The expert also commented on the
glyph design and believed it was a ‘‘good and novel’’ approach for summarizing and illustrating raw trip
data. He also believed the snapshot view was ‘‘particular useful’’ for analysis tasks. He said ‘‘the system is
useful and practical in terms of supporting the exploration of city dynamics.’’

Application The experts further mentioned the applications of this system in the field of smart-city
services. ‘‘ With the help of this system, we can know more about the dynamics of the city. The information is
useful in various applications, such as smart traffic light control for energy saving.’’ He also suggested that
‘‘you can use different types of mobility data, such as subway records and mobile phone locations, to detect
more meaningful features for analyzing. [...] Currently, the analysis in each time period is static. Adding the
time dimension to the data matrix will make the result more powerful.’’

Fig. 11 In the global view, a point representing the time interval 22:00–24:00 on July 4th (highlighted in the red circle) is
considered to be an outlier

Fig. 12 By comparing to a the normal pattern, b the anomalies traffic flows near the Brooklyn Bridge on July 4th, 2014 (the
Independent day) is revealed
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7 Conclusion

This paper presents a visual analysis system, EcoLens, for analyzing the dynamic latent regions that shape
the urban area. EcoLens was designed according to real-world requirements, such as interpreting mobility
pattern and urban evolution. An NMF-based algorithm was introduced to reveal the regional dynamics of
the mobility evolution patterns inside a focal urban area. We evaluated the performance and effectiveness of
EcoLens using a taxi-trip dataset of Manhattan Island through case studies and an interview with a domain
expert. Our study results indicated that our system is capable of identifying the mobility patterns to form
latent regions, uncovering the dynamics of latent regions, and interpreting the mobility patterns of regions.
In the future work, we plan to use more data resources in the analysis and process the growing scale of data
for real-time analysis.
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Wu W, Zheng Y, Qu H, Chen W, Gröller E, Ni LM (2014) Boundaryseer: visual analysis of 2d boundary changes. In: IEEE

conference on visual analytics science and technology, pp 143–152
Wu W, Xu J, Zeng H, Zheng Y, Qu H, Ni B, Yuan M, Ni LM (2016) Telcovis: visual exploration of co-occurrence in urban

human mobility based on telco data. IEEE Trans Vis Comput Graph 22(1):935–944
Wu W, Zheng Y, Cao N, Zeng H, Ni B, Qu H, Ni LM (2017) Mobiseg: interactive region segmentation using heterogeneous

mobility data. In: IEEE pacific visualization symposium
Yuan NJ, Zheng Y, Xie X, Wang Y, Zheng K, Xiong H (2015) Discovering urban functional zones using latent activity

trajectories. IEEE Trans Knowl Data Eng 27(3):712–725

EcoLens: visual analysis of ecological regions



Zhang K, Sun D, Shen S, Zhu Y (2017) Analyzing spatiotemporal congestion pattern on urban roads based on taxi gps data.
J Transp Land Use 10(1):675–694

Zhao Y, Luo X, Lin X, Wang H, Kui X, Zhou F, Wang J, Chen Y, Chen W (2019) Visual analytics for electromagnetic
situation awareness in radio monitoring and management. IEEE Trans Vis Comput Graph 26(1):590–600

Zheng Y, Wu W, Chen Y, Qu H, Ni LM (2016a) Visual analytics in urban computing: an overview. IEEE Trans Big Data
2(3):276–296

Zheng Y, Wu W, Zeng H, Cao N, Qu H, Yuan M, Zeng J, Ni LM (2016b) Telcoflow: visual exploration of collective behaviors
based on telco data. In: IEEE international conference on big data, pp 843–852

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

Z. Jin et al.


	EcoLens: visual analysis of ecological regions in urban contexts using traffic data
	Abstract
	Introduction
	Related work
	Urban segmentation
	Visualization of mobility patterns

	System overview
	Context preserving dynamic region segmentation
	Feature extraction
	Dynamic region segmentation

	Visualization
	Global view
	Map view
	Evolution view
	Other views

	Evaluation
	Algorithm validation
	Verification of the temporal smoothness
	Verification of the spatial smoothness
	Verification of the orthogonality

	Case study
	Evolution exploration
	Anomaly detection

	Expert interview

	Conclusion
	Acknowledgements
	References




