
Task-Oriented Optimal Sequencing of Visualization Charts
Danqing Shi* Yang Shi* Xinyue Xu* Nan Chen* Siwei Fu† Hongjin Wu* Nan Cao*

Tongji University

Figure 1: A case study based on the optimal task-oriented charts sequencing technique. This figure illustrates the results of an
expert user exploring the Cars dataset starting from a bar chart (the first chart on the left) to find out the clusters of cars having
the same number of cylinders. During the analysis, our technique recommends proper actions to guide the exploration process to
approach the analysis goal. After a series of operations, the user finally found that cars are clustered in a subspace as shown in the
last view, which indicates that fewer cylinders corresponds to smaller displacement and the lower horsepower.

ABSTRACT

A chart sequence is used to describe a series of visualization charts
generated in the exploratory analysis by data analysts. It provides
information details in each chart as well as a logical relationship
among charts. While existing research targets suggesting chart
sequences that match human’s perceptions, little attention has been
paid to formulate task-oriented connections between charts in a chart
design space. We present a novel chart sequencing method based on
reinforcement learning to capture the connections between charts
in the context of three major analysis tasks, including correlation
analysis, anomaly detection, and cluster analysis. The proposed
method formulates a chart sequencing procedure as an optimization
problem, which seeks an optimal policy to sequencing charts for
the specific analysis task. In our method, a novel reward function
is introduced, which takes both the analysis task and the factor of
human cognition into consideration. We conducted one case study
and two user studies to evaluate the effectiveness of our method
under the application scenarios of visualization recommendation,
sequencing charts for reasoning analysis results, and making a chart
design choice. The study results showed the power of our method.

Index Terms: Human-centered computing—Visualization—Visual
analytics; Computing methodologies—Machine learning;

1 INTRODUCTION

A chart sequence is used to describe a series of visualization charts
generated in the exploratory analysis by data analysts. It serves
as a form of graphical history which help analysts review their
prior findings [13, 36] or a tour guide which helps explore complex
datasets [5, 10]. Chart sequences not only provide information de-

*e-mail: { sdq, yangshi.idvx, xuxinyue, 1931950, wuhongjin, nan.cao }@
tongji.edu.cn. Nan Cao is the corresponding author.

†e-mail: fusiwei339@gmail.com

tails in each chart, but more importantly, they assist interpreting
the exploratory process, helping analysts understand the data, and
making the following decisions. For example, in an anomaly detec-
tion task, a user not only wants to investigate the anomaly but also
analyze how the anomaly is emerged from the data. An effective
chart sequence can help illustrate the entire analysis process and
interpret how an anomaly is detected.

Due to the importance, recently, research attentions have been
put on developing techniques to threading visualization charts into
meaningful sequences. Kim et al. [22] introduced GraphScape, the
state-of-the-art technique, that uses a directed graph to model the
entire chart design space with the nodes indicating design states
(i.e., a chart with proper parameters and data mapping) and the links
indicating various design actions such as changing the chart type
or applying a new data mapping. A user study was conducted to
estimate each of the design actions with the goal of weighting links
(i.e., actions) in the graph based on their capability of preserving a
user’s perception. As a result, a context-preserving chart sequence
corresponds to a path with the maximum weight in the graph. Al-
though GraphScape can suggest efficient sequence in general case,
it still has limitations in two scenarios: (1) Multiple chart sequences
can interpret the transition from the start chart to target chart with
the same perception cost. Thus analysts still have to take effort to
pick sequence; (2) Choosing different chart sequences may affect the
subsequent decision based on the specific analysis task. Therefore,
only considering user perception is not enough.

To address the above issues, in this paper, we introduce a novel
chart sequencing method based on the chart design space and the
graph model introduced in GraphScape. Our method can recommend
a sequence of visualization charts to help a user to travel from the
current visualization to the desired visualization based on the given
task. Our technique estimates the weight of the design actions
through a reinforcement learning based approach by considering
three common tasks in visual analysis: (1) correlation analysis; (2)
anomaly detection, and (3) cluster analysis. In our methods, we make
an analogy between a Markov decision process (MDP) and a chart
sequencing procedure where the identification of chart sequences
can be framed as finding an optimal decision policy through the

IEEE VDS 2019
20 October, Vancouver, BC, Canada
978-1-7281-2023-2/19/$31.00 ©2019 IEEE

MDP. In particular, given a chart design space represented by a
directed graph and modeled by MDP, we aim to find an optimal path
connecting a set of charts that best matches the analytical process
of a specific task. We introduce an inverse reinforcement learning
technique to learn the reward score of each action via a small number
of analysis demonstrations performed by experts [4, 28]. As a result,
we obtain a reward function that incorporates both analysis tasks and
human cognition factors. Finally we apply a value-iteration based
reinforcement learning algorithm based on the rewards to find the
optimal policy to achieve different tasks. Our approach supports
sequencing visualization charts for reasoning an analysis result and
offering a chart design choice for decision making. We evaluate the
proposed technique through one case study and two user studies to
estimate its capability of supporting visualization recommendation,
reasoning analysis results, and making chart design choice.

Generally, the paper has the following contributions:

• We model a chart design space as a Markov decision process,
and propose an approach based on reinforcement learning that
seeks an optimal policy to sequencing charts in the design
space to achieve a specific analysis task.

• We propose an inverse reinforcement learning method to learn
a reward function that takes into account both the analysis
tasks and human cognition.

• We conduct a case study and two controlled user studies to
evaluate the effectiveness of our approach in the application of
visualization recommendation, sequencing charts for reasoning
an analysis result, and making a chart design choice.

2 RELATED WORK

In this section, we review related techniques in three categories:
(1) visualization sequence, (2) visualization state spaces, and (3)
visualization recommendation.

2.1 Visualization Sequence
Users usually explore visualizations in an interactive way for vi-
sual analysis [15]. The whole exploratory analysis process can be
presented as a visualization sequence. Graphic history interface
recording a sequence of visualizations helps analysts to review, re-
trieve, and revisit their prior findings [13,36]. Insight provenance can
be derived from historical records of user exploration and analysis
process. Gotz and Zhou characterize users’ visual analytic activity
at multiple levels of granularity, i.e., Task, Sub-Task, Actions, and
Events [12]. They found that Actions can be used to represent activ-
ity both generally and semantically. Later, they investigated patterns
from recorded sequences and observed the four most widespread
behavior across different users and tasks, such as Scan, Flip, Swap,
and Drill-Down [11]. Their research can be used to recommend
visualizations according to user interaction. Similarly, Bavoil et al.
proposed VisTrails that provides an infrastructure to streamline the
creation and execution of visualization exploration pipelines [6].
They further track the workflows to leverage provenance informa-
tion to automate the construction of new visualizations [8, 32].

Visualization sequences are also commonly seen in narrative
visualization. According to Segel and Heer [33], narrative flow
often seeks to produce balances between author-driven and reader-
driven experiences. Some narrative flow is crafted according to
the intention of authors, which focuses on the logic of telling a
goal-based story. Some authors may employ animated transition to
make the presentation more attractive [14]. Authors often organize
visualizations in a linear sequence structure when they provide a
presentation or write a report [33]. Hullman et al. [18] showed
the evidence from cognitive psychology that the sequence structure
of linear-style narrative visualization plays a vital role in effective
storytelling. Later, they found that hierarchical sequence structure

characterizes most preferred visualization sequences [19]. Recently,
Qu and Hullman contributed detailed characterization of authors’
rationales for tolerating inconsistencies under some conditions [29].

Our approach draws inspiration from aforementioned research.
We extend prior work by taking analysis tasks into consideration. We
model a chart sequencing procedure as a Markov decision process,
and propose an inverse reinforcement learning method to learn a
reward that reflects both analytical process and human cognition.

2.2 Visualization State Spaces
Visualization state space can be fit in a unified graph-based model
where individual visualizations are nodes in the graph; users can
trace a path through the graph as they explore visualizations. Image
Graph is the first graph-structure representation for visualization
exploration [24]. Each visualization image and its parameters are
modeled as a node while the parameters change between two nodes
are links. P-Set model [20] extends Image Graph by introducing a
framework to encapsulate, share, and analyze the process of visual
exploration. The model can be used to operate upon or analyze a
wide domain of visualization in a rigorous manner.

Hullman et al. informed a graph-based approach that identi-
fies possible sequences in a visualization set and a visualization-to-
visualization transition cost model that approximates the cognitive
cost [18]. Based on the concept, Kim et al. [22] proposed Graph-
Scape, a directed graph model for reasoning about a visualization
state space. Nodes in the graph are Vega-Lite [31] charts specifi-
cations, and edges are edit operations between two specifications.
Though similar to our work, GraphScape has its limitation in two
aspects. First, it does not incorporate analysis tasks in modeling the
visualization state space. Thus, it is unable to answer how different
chart sequences affect the analytic process. Second, GraphScape
may identify and rank multiple paths according to human perception
in the application of path elaboration. However, it is unable to rank
paths from the perspective of analysis tasks. In this work, we address
the above limitations by modeling the connections between charts
in the context of three different analysis tasks, including cluster
analysis, anomaly detection, and correlation analysis.

2.3 Visualization Recommendation
Visualization recommendation often model a visualization state
space and use an objective function to suggest subsequent charts
according to the context, which is relevant to our work. There are
two lines of research in this field, i.e., rule-based and learning-based.

Rule-based approaches require experts to manually craft rules to
guide visualization design. APT is the first to automate the design of
2D graphical presentation for data using perceptual principles [25].
ShowMe is an automation tool which is incorporated in Tableau
to present data with support for dimension selection [26]. Voy-
ager extends prior work by automatic generation of a diverse set
of visualizations [35]. Draco supports the design of visualizations
by encapsulating design knowledge as constraints [27]. Kim and
Heer [21] consider analysis tasks to recommend effective visual
encoding for automated visualization design. Although hand-crafted
rules are necessary for the visualization research, our approach tries
to learn inherent knowledge of decision making through the demon-
stration of the analytic process performed by visualization experts.

With rapid development of machine learning, learning-based
approach is becoming increasingly popular in recent years. For
example, VizML [17] identifies five visualization design choices
and trains a machine learning model to learn the design choices
from a large corpus of datasets. DeepEye [23] trains a machine
learning model with large datasets to find top-k visualizations for
input data. Data2Vis borrows a deep learning model that formulates
visualization design as a sequence to sequence translation problem
[9]. Saket et al. [30] conducted a crowdsourced experiment to
evaluate the effectiveness of five types of visualization across the

Figure 2: The proposed technique for generating optimal task-oriented chart sequences, which consists of three major steps: (1) design space
modeling based on a Markov Decision Process (MDP); (2) reward learning based on the max entropy inverse reinforcement learning; (3) chart
sequencing based on an optimal state policy in the design space defined by the MDP via reinforcement learning using the reward function learned
in the last step.

ten low-level tasks and train a decision tree model to recommend
charts based on tasks. The research mentioned above requires large-
scale and high-quality training datasets, which are formulated as
data-to-visualization or task-to-visualization pairs. Recently, a new
large-scale visualization dataset as a collection of (data, visualization,
task) triplets [16] is in construction. In our inverse reinforcement
learning method, we use the demonstrations of analytic activities
by experienced visualization experts as our training data, which are
easy to collect using the log files in visualization tools.

As a complement to these aforementioned approaches which
focus on the recommendation of single visualization or visual encod-
ing, our work provides a method to recommend the chart sequence
based on effectiveness in the context of analysis tasks.

3 TASK-ORIENTED SEQUENCING OF CHARTS

In this section, we propose a reinforcement learning based technique
to thread charts in the chart design space into a sequence to approach
a specific analysis goal, including correlation analysis, anomaly
detection, and cluster analysis.

3.1 Overview

Fig. 2 illustrates the overview of the proposed technique, which con-
sists of three main steps: (1) We first model the chart design space
as a Markov Decision Process (MDP) with reward functions left
blank; Then, (2) we learn a reward function for each analysis task
using the inverse reinforcement learning method through a small
number of analysis demonstrations performed by expert users. Fur-
thermore, we incorporate human cognition into the reward function
to facilitate the understanding and reasoning of chart sequences with
lower perception cost; Finally, (3) we use the reinforcement learning
algorithm based on the reward functions to find an optimal policy in
the MDP. The optimal policy can thread charts into meaningful and
task-oriented sequences. In the rest of the section, we will introduce
each of these key steps in detail.

3.2 Modeling the Chart Design Space

In this section, we first review the background of a Markov Decision
Process (MDP), followed by a detailed description of using MDP to
represent a chart design space.

3.2.1 Background of MDP
A Markov decision process (MDP) describes a sequential decision
making procedure in a dynamic environment based on a state transi-
tion model, in which state transits to another state through various
actions under a certain probability [34]. Formally, an MDP is defined
as a tuple < S,A,R,P,γ >, where S = {s1,s2, · · · ,sm} is the state
space; A = {a1,a2, · · · ,an} is the action space; R : S×A× S→ R
is a reward function that determines the benefits that one will get
after transferring from one state to another by performing a certain
action; P : S×A×S→ [0,1] is the transition function that captures
the probability of transit from one state to another by performing an
action; γ ∈ [0,1) is a discount factor.

The objective of an MDP is to find an optimal state transition
policy π∗ that maximizes the expected accumulative rewards starting
from any given state s to approaching a specific goal (i.e., a desired
state). The optimization process can be formally defined as:

π
∗ = argmax

π
Eπ

[
∞

∑
k=0

γ
kr(t+k)|st = s

]
(1)

where π : S×A→ [0,1] is the policy function which indicates the
probability of performing a specific action given a state; π∗ is the
optimal policy and Eπ is the expectation under policy π; γ ∈ [0,1)
is the discount factor which is used to penalize the future rewards;
t indicates the current time and r(t+k) indicates the reward at time
t + k, which is given by

r(t+k) = R
(

s(t+k),a(t+k+1),s(t+k+1)

)
(2)

3.2.2 Design Space Modeling
We adopt the graph model introduced in GraphScape [22] but extend
it based on an MDP denoted as M =< S,A,R,P,γ > to capture the
entire visualization chart design space. In particular, as introduced
in GraphScape, a directed graph G =<V,E > is used to model the
design space. Each graph node indicates a chart with properties (e.g.,
chart type) and proper data mappings and each edge indicates an
editing behavior such as changing the chart type or encoding method.
Even with a small number of charts and operations, the design

Figure 3: The subtraction of (a) two state feature vectors results in (b)
an action feature vector.

space of chart sequence is already huge. In our implementation, we
construct a design space with three types of charts: bar chart, line
chart, and scatter plot. We map this model to an MDP as follows:

States (S) We denote each node n ∈ V in G as a state s ∈ S in
M. To facilitate the calculation in an MDP, the states need to be
further vectored. To this end, we adopt the node representation in
GraphScape, i.e., a grammar introduced in VegaLite [31], which
describes a chart by three descriptive components with 11 optional
values (Fig. 3): (1) marks with the possible options as “bar”, “line”,
and “point”, (2) encoding with possible options as “x axis”, “y
axis”, “color”, and “size”, and (3) transform with possible options as
“aggregate”, “bin”, “sort”, and “filter”. These options characterized a
chart, which are used as the features to represent a state. Specifically,
a 14-dimensional one-hot-vector fs is introduced in our system to
represent a state based on the combinations of these options as shown
in Fig. 3.

Actions (A) The action space A is directly defined by E, i.e.,
the edge collections in G. An action can also be represented by a
feature vector which is derived from the state features. Intuitively, an
edit operation is the reason causes the differences of two succeeding
states in the design space, thus can be represented by the vector
differences between two states (Fig. 3(b)):

fa = fst − fst−1 (3)

In addition, the action feature vectors of “modify field x”, “modify
field y”, and “modify field color” will be the same as “add field x”,
“add field y”, and “add field color”. Because the actions change the
same visual channel in each pair.

Reward Function (R) Directly build a reward function in our
case is a challenging task. Although GraphScape successfully esti-
mates a cost for each edit operation based on a user study, a reward
function, R : S×A× S→ R, takes the state space S into consider-
ation, thus resulting a much larger investigation space, which can
hardly be manually estimated through a user study. For example, in

our case, the design space G, although only contains three types of
charts, has 1152 nodes and 13056 edges, i.e. we need to estimate
13056 different transitions to build a reward function. Furthermore,
when considering different analysis tasks, we need to consider dif-
ferent analysis situations when sequencing the chart, thus making
the problem becomes even harder. To address this issue, in this
paper, we employed the technique of inverse reinforcement learning
to build a task-oriented reward function through a series of analysis
demonstrations made by a few expert users. The detailed techniques
will be discussed in the next section.

Transition Function (P) In the design space G, transition
probability between two states is deterministic, i.e., either 1 (the
two states are connected by an edge) or 0 (two states are dis-
connected). Therefore, the transition function can be defined as
P : S×A×S→{0,1}.

Discount Factor (γ). The discount factor determines the
present value of future rewards. As γ is close to 1, it will take future
rewards into account very strongly. In our case of task-oriented chart
sequencing, we set γ = 0.99.

Based on the above settings, a chart sequencing problem can be
formulated as an optimal policy finding problem and solved based
on a reinforcement learning algorithm.

3.3 Learning the Reward Function
In this section, we introduce an inverse reinforcement learning (IRL)
algorithm, the maximum entropy IRL [37], that we employed to
learn a reward function for both actions and states through a small
set of training samples. We choose to use an IRL algorithm due to
the lack of data and methods for directly estimating action rewards
regarding to different states. Our training sample is a collection of
visual analysis sequences generated by expert users during a data
analysis process given three different tasks: (1) correlation analysis,
(2) anomaly detection, and (3) cluster analysis.

3.3.1 Maximum Entropy IRL
The maximum entropy IRL algorithm takes a small set of training
sample, i.e., analysis sequences (which could be incomplete and
biased), to learn a sequence distribution by following the principle
of maximum entropy [2], which helps to gain information from an
incomplete and biased sample. The principle gives a reasonable
strategy to obtain a distribution from small samples. In particular,
given a small set of data samples, the data distribution can hardly be
determined. Among various qualified distributions, the one with the
maximum entropy is the most robust and reveals the most general
situation regardless of the bias given by the small sample.

With the above concept in mind, formally, the maximum entropy
IRL is defined to maximize the entropy of the distribution of analysis
sequences given a small training set based on the following objective:

θ
∗ = argmax

θ

m

∑
i=1

logP(ζ̃i|θ) (4)

where ζ̃i is a training sample (i.e., an analysis sequence) generated
by the experts; θ is the parameter vector to be learned, which also di-
rectly defines the action and state rewards (introduced later); P(ζ̃i|θ)
shows the occurrence likelihood of a sequences in the training set
under the parameters given by θ , which is defined as follows:

P(ζi|θ) =
1

Z(θ)
eθ>fζi =

1
Z(θ)

e∑s j ,a j∈ζi
θ>(fs j+fa j) (5)

where fsi and fai respectively indicate the feature vectors of a state si
and an action ai, whose rewards are respectively defined by θ T fsi and
θ T fai ; Z(θ) = ∑i eθ T fζi normalizes the whole term into a probability.

Following this definition, logP(ζ̃i|θ) indicates the entropy of the
distribution captured by P(·).

Please note that in Eq. (5), we slightly changed the original def-
inition of logP(ζ̃i|θ) by adding the term θ T fai in the purpose of
calculating an action reward based on the same algorithm frame-
work.

3.3.2 Reward Function
Once trained, the above algorithm provides a reward function RT (·)
for each state and action in the chart design space G modeled by an
MDP M. Given the reward function, a chart sequence ζi, starting
from an arbitrary state si, can be generated to approach a given analy-
sis task T . However, this sequence without taking a user’s perception
into consideration, thus may generate discontinuous sequences, thus
greatly affects the readability of the chart sequencing results.

To address this problem, we borrow the perception-preserving
costs, c(ai), of an edit operation ai (i.e., an action in our case)
introduced in GraphScape as a part of the reward function. Formally,
a reward function of a given task T is defined as a linear combination
of state reward, action reward, and c(ai) as follows:

RT (s(i−1),ai,si) = (RT (s(i−1))+RT (ai))+λ · (−c(ai)) (6)

where the first two terms ensuring the given task T can be achieved
based on the reward and the last term penalizes the overall reward
score based on the perception cost. λ is a parameter that balances
between these two parts, which is set to 0.3 in our implementation.

3.3.3 Training the Model
In our implementation, three reward functions were respectively
trained for the aforementioned three analysis tasks, i.e., correlation
analysis, anomaly detection, and cluster analysis.

To collect training samples, we conducted a pilot study with
expert users to collect their analysis sequences given a specific
analysis task. Three expert users who were experienced with Tableau
and visual analysis were recruited from an international business
intelligent company. They were required to manually restoring an
analysis sequence to approach a desired state (i.e., a chart with
proper data mapping, attributes, and reveals a given data pattern)
by fully exploring the entire chart design space defined by G and
modeled by M.

Before the study, we prepared the experiment data and tasks by
exploring the Tableau Public Gallery [3] and Plotly Community
Feed [1]. We filter the visualizations on these public platforms by
the rules that the selected visualizations should have 100 views, one
star, and one review at least. A set of 60 visualization views together
with their data were collected from these sources with each of the
views clearly shows an outlier, or a data correlation pattern, or data
clusters, which correspond to the results of our focal analysis tasks.

During the study, a user restored an analysis sequence starting
from the initial state in the design space and ending at one of the
aforementioned views selected by us. We use random states as the
initial state in each session to make sure the diversity of interactions.
Each of the users was asked to took several minutes to understand the
background of the data and then restore the analysis sequences for
20 selected visualization views by editing the initial chart in series
based on the edit operations defined in G. There were multiple ways
to approach a desired view. Only the one that best preserved the
users’ cognition and with a shorter length (i.e., more efficient) were
reported by our users. The results were stored and later were used
as the analysis demonstration samples for training the model.

The entire study was performed based on Polestar [35], which has
a Tableau-liked interface and designed based on Viga-Lite and the
design space G. The study started with a tutorial to introduce the goal
and tasks of the study, and the basic operations of Polestar. Training
tasks were also performed to ensure the users fully understood our
goal and could generate validate analysis sequences.

As a result, 60 valid analysis sequences were collected from
the pilot study (20 for each analysis task). Each of the se-
quences ζ̃i is stored in the vector form, denoted as ζ̃i =
{s0,a1,s1,a2,s2, · · · ,an,sn} with ai, si indicate the action and state
vector respectively.

3.4 Policy Finding
Based on the reward function introduced above, we are able to
thread a series of charts to generate a sequence in the design space
to achieve an analysis goal starting from any initial state. When
the design space is modeled by an MDP, M, the whole sequencing
process equivalent to find an optimal policy based on M as described
in Eq. (1). We employ the value-iteration based reinforcement
learning algorithm [34] to solve this problem. The algorithm follows
the process of dynamic programming: in each iteration, it estimates
the expected accumulative rewards of each state and then update the
policy to ensure a better action will be executed in the next towards
a state with a higher reward.

4 EVALUATION

We evaluate our technique through a case study with an expert user
and two users studies, which respectively estimate our technique in
three application scenarios: (1) visualization recommendation, (2)
reasoning an analysis result, and (3) making a chart design choice.

4.1 Case Study
A case study was conducted in a scenario of using the proposed
technique for visualization recommendation. To this end, as shown
in Fig. 4, a prototype system was developed for the case study based
on Vega-Lite and D3.js [7], and our chart sequencing technique. The
study was performed by a senior PhD student with 3 years’ experi-
ence in visual analysis. We used a dataset containing 406 different
cars whose properties are defined by a 7-dimensional vector.

Tasks and Procedure After a brief introduction about the
goal of the study and the study system, the expert was required to
explore the data in the system based on the following analysis tasks:

T1 Cluster Analysis. Finding out a visualization view that clearly
illustrates cluster patterns of the input data.

T2 Anomaly Detection. Finding out a visualization view that
clearly illustrates anomalous items in the input data.

T3 Correlation Analysis. Finding out a visualization view that
clearly shows the correlations of the input data.

All the tasks started at the same state, i.e., a randomly picked bar
chart with the X axis represents the number of Cylinders and the Y
axis represents the averaged Horsepower as shown in Fig. 1. The
expert was able to use any of the supported actions to modify the
chart through the data mapping panel (Fig. 4(a)) and the chart panel
(Fig. 4(b)) to finish the analysis task. The system automatically
recommended actions and showed the corresponding results in the
recommendation list (sorted by their rewards) for user to select
(Fig. 4(c)) in each analysis step to guide the user to approach a
selected analysis task (Fig. 4(d)). Each of the chart edit operations
was recorded by the system and shown in the action history list
(Fig. 4(e)).

During the study, the expert was encouraged to ask questions
and make comments on our system. We asked and recorded the
reasons of the decisions the user made in each analysis step. A task
is finished when the user reported the finding of the desired data
pattern. A follow-up interview was also performed to further collect
his comments on our technique. The whole study lasted for about
one hour.

Figure 4: A prototype system developed for evaluating the proposed chart sequencing technique, which consists of (a) a data mapping panel, (b)
a chart panel, (c) a recommendation list, (d) an analysis task choicer, and (e) an action history list.

Results The expert successfully finished all the tasks without
meeting any trouble by following the system’s recommendation.
The results are shown in Fig. 1 and Fig. 5.

In particular, Fig. 1 illustrates the user’s exploration process of
finding clusters in the data (T1). Starting from the initial bar chart,
the user first used colors to represent the number of cylinders as he
wanted to cluster cars by this property. After that, he followed the
recommendations of our system by changing the chart to a scatter
plot followed by a series operations on adjusting the data mappings
and scales on X axis and Y axis, resulting in the last view that clearly
showed several clusters. Specifically, cars with fewer cylinders (blue,
orange and green dots) are clustered together as they also have a
smaller horse power (Y axis) and displacement (X axis). The cars
with more cylinders are also well clustered in this view.

Fig. 5 illustrates the user’s exploration process of finding an
anomaly (T2) and correlation pattern (T3). In these two cases, the
user, again, followed the system’s recommendations to change the

Figure 5: Case study results of two analysis tasks, i.e., (a) anomaly
detection and (b) correlation analysis.

data mapping and scale on axes and change marks to switch to a
proper chart type. As a result, an outlier indicates a car with a very
large horse power (Y axis) but has a relatively small weight (X axis)
shown in a scatter plot (Fig. 5(a)) and the displacement and the
horsepower has a strong positive linear correlation (Fig. 5(b)).

Feedback Much valuable feedback was collected during the
follow-up interview. Generally, the user felt our system was very
useful and the recommendation feature was “powerful” as it “can
help me find the answers quickly”. He also felt that the resulting
sequence was “meaningful” and “can help illustrate how a data
pattern is detected”. He was also eager to see the techniques to be
extended and used for other more complicated analysis tasks such
as prediction. He also mentioned “this is a useful feature for people
who have little knowledge on data analysis,, but only know what
they want from the data”. Despite these positive comments, after
knowing more details of our technique, he also suggested “it will
be more useful if the recommendation process could take users’
feedback into consideration”.

4.2 User Studies
We conducted two within-subject user studies with 20 participants
(11 females) aged 20 to 35 (mean 25). All participants are with
normal vision and reported that they have knowledge in data visual-
ization or data analytics. All participants took part in both two user
studies on two different days. The first study evaluates the effective-
ness of different chart sequences, and the second one further focuses
on various adjacent charts in the sequence.

4.2.1 User Study I
The study evaluates the effectiveness of our approach under the
application scenario of sequencing charts for reasoning.

Tasks and Procedure The study was designed to measure
whether the chart sequences ranked by our approach align with user
preference. To this end, we first asked a domain expert to manually
generate chart sequences as test data and then compared our ranking
result of the sequences with user rating. As a chart sequence is
determined by its source and target states, we started by generating
target states. For each of the three analysis tasks, we decided a chart

Figure 6: An example chart sequence used in the user study I for participants to rate. In this study, participants were asked to rate chart sequences
regarding to an analysis task based on their own preferences and experience from “very good” to “very poor”.

type and its corresponding dataset. The process of selection was
supervised by the domain expert. As a result, a line chart and two
scatter plots were used for correlation analysis, anomaly detection,
and cluster analysis, respectively. The three datasets include movies,
cars, and iris datasets1.

Each of the three visualizations was used as the target state in a
chart sequence for a specific analysis task. To produce the source
state in the sequence, the expert was asked to change the target
state using the actions defined in the action space A. To make the
difference between the target and source states as large as possible,
we required that the actions should involve one relevant to mark
operations while the rest can be selected from options relevant to
encoding and transform operations. We decided upon the number of
actions as four based on user requirements in a pilot study, ensuring
that participants feel neither overwhelmed by information nor asking
for more variations.

Once we identified the actions of sequencing for a source-target
state pair, its possible chart sequences can be enumerated via permu-
tation. For example, given a set of four actions that transforms the
source state to the target state, we can arrange the members of the
action set into an order, resulting in 4! possible sequences. Thus, we
generated 24 possible chart sequences for each analysis task. For
each of the three source-target state pairs, our approach ranked its
24 possible chart sequences.

The study consisted of three tasks, each of which based on one
of the three analysis tasks: correlation analysis, anomaly detection,
and cluster analysis. Before each task, we briefly described the
requirements and dataset. In each task, participants were shown a
source-target state pair and its 24 possible chart sequences, as shown
in Fig. 6. At the end of each task, participants were asked to rate on
how well each chart sequence presents the data in a clear and logical
manner [22] on a 5-point Likert scale from “Very Good” to “Very
Poor”. Participants were also encouraged to provide comments on
the reason of their ratings. Each task lasted for about 15 minutes. To
avoid learning effects, we counterbalanced the orders of sequences
as well as their assignment to the three tasks.

Hypotheses As we apply inverse reinforcement learning to
learn a reward function for each analysis task through analysis
demonstrations performed by expert users, our result should align
with user preference. Thus our hypothesis is as follows:

H1 The ranking of chart sequences produced by our approach
strongly correlates with participants’ preferences.

Results To measure the correlation between the ranking of
chart sequences produced by our approach and by participants, we
used two rank correlation statistics, Kendall’s τb and Spearman’s
rank correlation coefficient. We obtained user ranking by averaging

1http://vega.github.io/voyager/

user ratings on each task and ranking the 24 chart sequences in
descending order.

The results of Kendall’s τb show a strong, positive correlation
between the two rankings, with τb = 0.59, p < 0.05. The results
of Spearman’s rank correlation coefficient also reveals a strong,
postitive correlation between the two rankings, with ρ = 0.77, p <
0.05 (H1 accepted). A majority of participants suggested that the
chart sequence presenting task-related patterns in earlier stages is
more preferable. Participants’ preference for chart sequences varies
in different analysis tasks. For example, in anomaly detection task,
P12 said: “I would select the one that changes the mark type to point
in the first action”. P8 felt that “the edit operations like aggregate
and filter are less important in this task, I will use it in later actions”.
In correlation analysis task, most users noted that modifying field can
help understanding the relationship between columns. The actions
relevant to field modification should thus be used at the beginning
of sequence. In cluster analysis task, some participants noted that
encoding color should take precedence over other actions to help
distinguish clusters.

4.2.2 User Study II

The second user study evaluates the effectiveness of our approach
under the application scenario of making a chart design choice.

Task and Procedure The study was designed to measure
whether the design choice recommended by our approach aligns
with user preference. To this end, we first generated source states as
test data and then compared our recommendation on next chart with

Figure 7: An example design choice used in the user study II. Par-
ticipants were asked to rate how possible he/she will select the edit
operation as the next action with regard to an analysis task. The left
visualization shows the current state while the right one shows the
preview of the next state. 10 possible actions that used to transform
the current state to the next state are also presented.

user preference. For each analysis task, we designed three charts
including a line chart, a bar chart, and a scatter plot based on iris,
movies, and cars datasets, respectively. To avoid learning effect, we
mirrored and rotated each dataset before reusing it, ensuring that
participants were unable to memorize charts presented in the first
study. In total, we generated nine charts as test data for the three
analysis tasks and used these nine charts as the source states.

The study procedure follows that of the first study. In each of the
three tasks, we displayed three source states to participants one at a
time, each with 10 possible next actions (Fig. 7). As a participant
clicks one action, he/she can preview its resulting state on the right.
In order not to affect the participants’ choice decisions, the data fields
chosen for “add/modify field” actions are random. Participants were
asked to rate how possible he/she will select the edit operation as
the next action with regard to an analysis task on a 5-point Likert
scale. Each task lasted less than 10 minutes. We counterbalanced
the orders of charts as well as their assignment to the three tasks.

We also compared our approach with two baselines: Task-Only,
an alternative approach by removing perception optimization from
our method, and GraphScape. In our method and Task-Only condi-
tion, we ranked the 10 actions using our approach and our approach
without perception optimization, respectively. In GraphScape condi-
tion, the 10 possible next actions were used as the input to Graph-
Scape. We recorded the perception costs produced by GraphScape
for each action and ranked the 10 actions according to their costs.

Hypotheses By taking both the analysis task and the factor of
human cognition into consideration, our approach is able to achieve
better performance compared to the baseline methods. Thus, we
posed the following hypotheses:

H2.1 The choice of adjacent chart recommended by our approach
strongly correlates with user preference.

H2.2 The chart design choice recommended by our approach shows
a more strongly correlation with user preference than that by
GraphSpace and Task-Only.

Results We report statistical results and user feedback from the
user study. Kendall’s τb and Spearman’s rank correlation coefficient
are applied to examine if there is a strong correlation between the
two rankings of design choices.

We found a strong, positive correlation between our ranking and
user ranking, with τb = 0.64, p = 0.009. Besides, the result of
the Spearman’s correlate coefficient is with ρ = 0.78, p = 0.007,
which demonstrates that our ranking has a high correlation with user
ranking (H2.1 accepted). Participants also provided the motivations
behind their choices. For example, in anomaly detection task, P4
said: “Given that the source visualization is a scatterplot, I will add
color encoding to find more patterns at first”. P18 noted that“if the
values are aggregated in Y axis, I would remove the aggregation to
retrieve more details for anomaly detection.” P20 commented: “for
me, line charts may not be a good choice for revealing anomalies,
so I change the line chart to a scatter plot.”

The result shows that the chart design choice recommended by
Task-Only also strongly correlates with user preference, with τb =
0.51, p = 0.039 and ρ = 0.66, p = 0.038. The coefficients between
GraphScape ranking and users ranking are τb = 0.11, p = 0.65 and
ρ = 0.078, p = 0.829, indicating a weak correlation. By comparing
our approach with Task-Only and GraphScape, we found that our
approach outperforms the two baselines (H2.2 accepted).

5 DISCUSSION

In this section, we discuss the limitations and implications of our
current work based on the results of our evaluation.

5.1 Limitation

We observed the major limitation of the proposed technique is data
supporting. Our design space is highly generalized and separated
from the input data. In other word, the charts are sequenced by
considering their likelihood of co-occurrences in the design space
based on an MDP without considering about underlying data to be
analyzed. However, experts should consider the characteristics of
the selected data fields when they make the decision for data visual-
ization. Thus a better chart sequencing results could be generated to
approach an analysis goal if the algorithm takes data into account.
To this purpose, large-scale training data should be involved due to
the complexity and diversity of the datasets, which needs long-term
collection work. Besides, to avoid the high possibility of a biased
model, we should also collect demonstrations from more experts
with experiences to guide the training process. We believe this is a
promising research direction that worth being studied in the future.

5.2 Task Analysis vs. User Perception

Our approach involves task analysis in the reward function to rec-
ommend chart sequences for a specific analysis task. By comparing
our approach with the baseline without perception optimization, we
found that the design choices recommended by the two methods
both show a strong, positive correlation with user preference. The
finding suggests that user perception could be a less important factor
when deciding a design choice in an analysis task. Most partic-
ipants selected the action that transforms the current state to the
next state mainly based on the task-oriented target. However, in
other application scenarios such as animated transition, users tend to
make design choices based on their perception costs. Therefore, our
approach should allow users to adjust the weights of task analysis
and perception under different application scenarios.

6 CONCLUSION AND FUTURE WORK

In this paper, we introduce a novel chart sequencing method based
on reinforcement learning to capture the connections between charts
in the context of three major analysis tasks, including correlation
analysis, anomaly detection, and cluster analysis. We contribute (1)
an approach based on reinforcement learning that seeks an optimal
policy to sequencing charts in the design space to achieve a specific
analysis task, and (2) a novel inverse reinforcement learning method
to learn a reward function that takes into account both the analy-
sis tasks and human cognition. We designed and conducted two
controlled user-studies to evaluate the effectiveness of our method
under the application scenarios of sequencing charts for reasoning
an analysis result and for making a chart design choice. In both
studies, our approach had a good performance that can match users’
understanding and preference.

In the future, we plan to explore the following research directions.
First, our approach should be extended to support chart sequencing
for multiple analysis tasks. In real-world scenarios, analysts might
be tasked with finishing multiple tasks at the same time. Thus, we
plan to use analysis sequences combining segments used for different
tasks as sample data to train our model. Second, we plan to combine
analysis sequences collected from expert users with the attributes
of datasets (e.g., data volume, data distribution, and data type).
Third, we should collect more analysis sequences conducted by
domain experts to generate a training set of high diversity. Thus, our
reinforcement learning-based model can achieve better performance.

ACKNOWLEDGMENTS

We would like to thank all visualization experts and users for par-
ticipating our studies and interviews. This research was sponsored
in part by the National Natural Science Foundation of China under
grant No.61802283, 61602306 and the Fundamental Research Funds
for the Central Universities in China.

REFERENCES

[1] Plotly community feed. https://plot.ly/feed. Accessed: 2019-
03-03.

[2] Principle of maximum entropy. https://en.wikipedia.org/

wiki/Principle_of_maximum_entropy. Accessed: 2019-03-02.
[3] Tableau public gallery. https://public.tableau.com/en-us/s/
gallery. Accessed: 2019-03-03.

[4] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse rein-
forcement learning. In Proceedings of the twenty-first international
conference on Machine learning, p. 1. ACM, 2004.

[5] D. Asimov. The grand tour: a tool for viewing multidimensional data.
SIAM journal on scientific and statistical computing 6.1, pp. 128–143,
1985.

[6] L. Bavoil, S. P. Callahan, C. E. Scheidegger, H. T. Vo, P. Crossno,
C. T. Silva, and J. Freire. Vistrails: enabling interactive multiple-view
visualizations. IEEE Visualization., pp. 135–142, 2005.

[7] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven docu-
ments. IEEE Transactions on Visualization and Computer Graphics,
17(12):2301–2309, 2011.

[8] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and
H. T. Vo. Managing the evolution of dataflows with vistrails. 22nd
International Conference on Data Engineering Workshops, pp. 71–71,
2006.

[9] V. Dibia and Çagatay Demiralp. Data2vis: Automatic generation
of data visualizations using sequence to sequence recurrent neural
networks. CoRR, abs/1804.03126, 2018.

[10] Friedman, J. H., , and W. Stuetzle. Projection pursuit regression.
Journal of the American statistical Association, pp. 817–823, 1981.

[11] D. Gotz and Z. Wen. Behavior-driven visualization recommendation.
In IUI, 2009.

[12] D. Gotz and M. X. Zhou. Characterizing users’ visual analytic activity
for insight provenance. 2008 IEEE Symposium on Visual Analytics
Science and Technology, pp. 123–130, 2008.

[13] J. Heer, J. D. Mackinlay, C. Stolte, and M. Agrawala. Graphical
histories for visualization: Supporting analysis, communication, and
evaluation. IEEE Transactions on Visualization and Computer Graph-
ics, 14, 2008.

[14] J. Heer and G. G. Robertson. Animated transitions in statistical data
graphics. IEEE Transactions on Visualization and Computer Graphics,
13:1240–1247, 2007.

[15] J. Heer and B. Shneiderman. Interactive dynamics for visual analysis.
Communications of the ACM, 55(4):45–54, 2012.

[16] K. Hu, N. Gaikwad, M. Bakker, M. Hulsebos, and E. Zgraggen. Viznet:
Towards a large-scale visualization learning and benchmarking reposi-
tory. Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, 2019.

[17] K. Z. Hu, M. A. Bakker, S. K. H. Li, T. Kraska, and C. A. Hidalgo.
Vizml: A machine learning approach to visualization recommendation.
arXiv preprint arXiv:1808.04819, 2018.

[18] J. Hullman, S. M. Drucker, N. H. Riche, B. Lee, D. Fisher, and E. Adar.
A deeper understanding of sequence in narrative visualization. IEEE
Transactions on Visualization and Computer Graphics, 19:2406–2415,
2013.

[19] J. Hullman, R. Kosara, and H. Lam. Finding a clear path: Structuring
strategies for visualization sequences. Comput. Graph. Forum, 36:365–
375, 2017.

[20] T. J. Jankun-Kelly, K.-L. Ma, and M. Gertz. A model and framework
for visualization exploration. IEEE Transactions on Visualization and
Computer Graphics, 13, 2007.

[21] Y. Kim and J. Heer. Assessing effects of task and data distribution
on the effectiveness of visual encodings. Comput. Graph. Forum,
37:157–167, 2018.

[22] Y. Kim, K. Wongsuphasawat, J. Hullman, and J. Heer. Graphscape:
A model for automated reasoning about visualization similarity and
sequencing. In Proceedings of the CHI Conference on Human Factors
in Computing Systems, 2017.

[23] Y. Luo, X. Qin, N. Tang, and G. Li. Deepeye: Towards automatic
data visualization. 2018 IEEE 34th International Conference on Data
Engineering (ICDE), pp. 101–112, 2018.

[24] K.-L. Ma. Image graphs-a novel approach to visual data exploration.
Proceedings Visualization (Cat. No.99CB37067), pp. 81–88, 1999.

[25] J. D. Mackinlay. Automating the design of graphical presentations of
relational information. ACM Trans. Graph., 5:110–141, 1986.

[26] J. D. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic
presentation for visual analysis. IEEE Transactions on Visualization
and Computer Graphics, 13, 2007.

[27] D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M. Smith, B. Howe, and
J. Heer. Formalizing visualization design knowledge as constraints:
Actionable and extensible models in draco. IEEE Transactions on
Visualization and Computer Graphics, 25:438–448, 2018.

[28] A. Y. Ng, S. J. Russell, et al. Algorithms for inverse reinforcement
learning. In Icml, vol. 1, p. 2, 2000.

[29] Z. Qu and J. Hullman. Keeping multiple views consistent: Constraints,
validations, and exceptions in visualization authoring. IEEE Transac-
tions on Visualization and Computer Graphics, 24:468–477, 2018.

[30] B. Saket, A. Endert, and C. Demiralp. Task-based effectiveness of
basic visualizations. IEEE Transactions on Visualization and Computer
Graphics, 2018.

[31] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-
lite: A grammar of interactive graphics. IEEE Transactions on Visual-
ization and Computer Graphics, 23:341–350, 2017.

[32] C. E. Scheidegger, H. T. Vo, D. Koop, J. Freire, and C. T. Silva. Query-
ing and creating visualizations by analogy. IEEE Transactions on
Visualization and Computer Graphics, 13:1560–1567, 2007.

[33] E. Segel and J. Heer. Narrative visualization: Telling stories with
data. IEEE Transactions on Visualization and Computer Graphics,
16:1139–1148, 2010.

[34] R. S. Sutton, A. G. Barto, et al. Introduction to reinforcement learning,
vol. 135. MIT press Cambridge, 1998.

[35] K. Wongsuphasawat, D. Moritz, A. Anand, J. D. Mackinlay, B. Howe,
and J. Heer. Voyager: Exploratory analysis via faceted browsing of
visualization recommendations. IEEE Transactions on Visualization
and Computer Graphics, 22:649–658, 2016.

[36] H. Wu, D. Shi, N. Chen, Y. Shi, Z. Jin, and N. Cao. Visact: A visualiza-
tion design system based on semantic actions. Journal of Visualization,
2019.

[37] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum
entropy inverse reinforcement learning. In AAAI, vol. 8, pp. 1433–1438.
Chicago, IL, USA, 2008.

https://plot.ly/feed
https://en.wikipedia.org/wiki/Principle_of_maximum_entropy
https://en.wikipedia.org/wiki/Principle_of_maximum_entropy
https://public.tableau.com/en-us/s/gallery
https://public.tableau.com/en-us/s/gallery

	Introduction
	Related Work
	Visualization Sequence
	Visualization State Spaces
	Visualization Recommendation

	Task-Oriented Sequencing of Charts
	Overview
	Modeling the Chart Design Space
	Background of MDP
	Design Space Modeling

	Learning the Reward Function
	Maximum Entropy IRL
	Reward Function
	Training the Model

	Policy Finding

	Evaluation
	Case Study
	User Studies
	User Study I
	User Study II

	Discussion
	Limitation
	Task Analysis vs. User Perception

	Conclusion and Future Work

