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Interactive Context-Aware Anomaly Detection
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Abstract—Automatic anomaly detection techniques have been
extensively used to support decision making in abnormal situa-
tions. However, existing approaches are limited in their capacity
of effectively identifying anomalies due to the complexity of the
real-world environment, the uncertainty of the data input, and the
unavailability of ground truth. In this paper, we propose an inter-
active context-aware anomaly detection algorithm framework that
incorporates human judgment in searching for anomalous regions
within a large geographic environment. In specific, our framework,
1) estimates a focal region and detect anomalous situations in real
time, through which the user can observe and analyze suspicious
entities, 2) leverages user feedback to refine results and guide fur-
ther analysis, and 3) tolerates potential fault feedback provided
by the users and resignal dubious anomalous points. Based on the
framework, we propose two algorithm implementations, respec-
tively, employ Bayes’ theorem and metric learning. We demonstrate
the effectiveness of the proposed framework and corresponding im-
plementations through two controlled user studies and a case study
with a domain expert.

Index Terms—Anomaly detection, interaction techniques.

1. INTRODUCTION

NOMALY detection refers to the problem of identifying
A patterns in the data that do not conform to expected be-
havior [1]. A variety of anomaly detection systems have been
developed for different purposes such as finding environmental
changes [2], improving information security on social media [3],
and monitoring traffic [4].

Due to its importance, anomaly detection techniques have
been extensively researched. Existing techniques primarily ap-
proach the problem through automated analysis models includ-
ing classification-based [5], clustering-based [6], statistical [7],
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[8], and spectral methods [9]. However, the computation re-
sults of analysis models are often imprecise and even mislead-
ing due to the complexity of the real-world environment, the
uncertainty of the data input, and the unavailability of ground
truth [10]. Consequently, interactive strategies have also been
proposed to facilitate anomaly detection such as acquiring new
or updated labels from users [11]. While such human-in-the-
loop approaches significantly refine the analysis models, most
of them are built on the assumption that all anomalies in the envi-
ronment are completely observable. This assumption, however,
overlooks the impact of environment complexity on detecting
anomalies in real-world scenarios. Here, environmental com-
plexity measures how difficult an anomaly in an environment
can be observed by humans. For example, a polluted region with
a small number of monitoring stations has a low probability that
its anomalous situation can be observed. When an analyst in-
vestigates such a region with high environmental complexity,
he or she may incorrectly perceive that the region has not been
polluted.

In response to the aforementioned limitations, we propose a
more reliable and practical interactive framework that utilizes
human supervision to search for anomalous regions within a
large geographic environment. Our framework has the following
three main advantages.

1) The framework can estimate the environment and detect
anomalous situations in real time, through which a user
can observe and analyze suspicious entities.

2) The framework can leverage user feedback to refine results
and guide further analysis. Due to the lack of ground truth,
we use user domain knowledge as the essential source
for refinements, meaning that a labeling on local environ-
ment will trigger global updates and thereby guide further
analysis.

3) The framework can tolerate potential false feedback by
introducing environmental complexity. When the user
investigates a region with high environmental complex-
ity, he or she may provide false feedback. The fault
tolerant update mechanism can re-signal dubious anoma-
lous entities and require further investigation from the
user.

Based on the proposed framework, we propose two algo-
rithms, respectively, employ Bayes’ theorem and metric learn-
ing. Bayes’ theorem is selected as it can calculate the condi-
tional probability of finding an anomaly in a specific region
immediately after receiving user feedback one at a time. On the
other hand, metric learning can process multiple user feedback
simultaneously and apply user feedback to the data for situation
update.
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The results of our two user studies suggests that the frame-
work can effectively support anomaly detection. Within the
framework, the Metric-Update implementation outperforms the
Bayes-Update in terms of the detection accuracy and time cost.
In addition, an expert walk through in an air quality monitoring
scenario suggests that our framework can provide solid supports
for real use cases.

In summary, our work has the following main contributions.

1) Algorithm framework: We introduce an online interac-
tive context-aware anomaly detection algorithm frame-
work. The proposed framework provides an efficient
anomaly detection mechanism that interactively adopts
human judgment and includes environmental complexity
into computations.

2) Situation update algorithms: Based on the proposed
framework, we provide two algorithmic implementa-
tions that employ Bayes’ theorem and metric learning,
respectively, to help detect regional anomalies in the
environment.

3) Evaluation: We conducted two controlled user studies,
each having 18 participants, and a case study with a do-
main expert to verify the usefulness of the framework and
compare the effectiveness of the two proposed algorithmic
implementations.

In the rest of this paper, we first provide a brief survey of re-
lated work (see Section IT). Then, we ground our motivation with
a use scenario (see Section III), and then introduce the frame-
work and two implementations (see Section V). For evaluation,
Section V describes the details and rationales of the experiment
design, followed by the first study, analysis results, and dis-
cussions (see Section VI). Section VII describes the second user
study and an expert walk-through based on the prototype system.

II. RELATED WORK

Anomaly detection is a well-established field aiming at find-
ing patterns in data that deviate from normal behavior [12]. In
response to the indecisive “anomaly” definition problem, prior
studies have also proposed interactive strategies to help practi-
tioners personalize their detection models based on their own
decision boundaries. Researchers have proposed multiple forms
of feedback. For instance, Konijn and Kowalczyk [13] enabled
users to iteratively label outliers until no more interesting outliers
can be found. Krasuski and Wasilewski [ 14] improved the detec-
tion of outlying Fire Service’s reports by discussing the features
and decision boundaries with domain experts. Cao et al. pre-
sented TargetVue [11], a visualization system that displays the
analysis results of anomalous online user behaviors and collects
feedback from analysts. Liao er al. [15] developed GPSvas,
which embeds an active learning process in its visual analy-
sis, allowing users to input manual labels for further training.
Online learning approaches has also been applied to anomaly
detection. For example, Ahmad et al. [16] detected anomalies
in streaming data using an online sequence memory algorithm.
Similarly, Ozkan et al. [17] utilized the Markov model to de-
tect anomaly in time series data. Bastani et al. [18] provided an
efficient framework using sequential Monte Carlo for surveil-
lance video. The aforementioned work helps efficiently detect
anomalies in large scale, streaming data without spatial infor-
mation. Laxhammar and Falkman [19] proposed the Sequential
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Hausdorff Nearest-Neighbor Conformal Anomaly Detector for
online learning and sequential anomaly detection on geo-spatial
trajectory data. Cao et al. [4] designed a visual interactive sys-
tem, Voila, that uses Bayesian approach to detect anomalies in
an urban context. Our interactive framework incorporates human
supervision in searching for anomalous regions within a large ge-
ographic environment. The framework extends Voila’s Bayesian
approach and also introduces metric learning implementation,
which is able to process multiple feedback simultaneously. Also,
we use a fault tolerant mechanism by introducing environmen-
tal complexity in our algorithms to resignal dubious anomalous
entities and require further investigation from the user.

III. USE SCENARIO

To better motivate the design of our framework, we first de-
scribe a use scenario. Suppose Alice, an urban security officer
in the department of urban traffic monitoring and management,
attempts to use an anomaly detection system to monitor urban
traffic and find abnormal traffic incidents (e.g., the traffic flow
within a region is significantly higher compared to its historical
statistics). Alice first observes and analyzes the most suspicious
regions ranked by the automated analysis models. However, she
finds that the results are not aligned with her domain knowl-
edge and, thus, refines the results by confirming or rejecting
the anomalies detected by the system. After the refinement, the
results are more accurate. However, there are tons of regions,
manually checking each of them would be an onerous task. She
expects that the system will use her labels as an indicator to
update other regions in similar situations automatically. Unfor-
tunately, the system fails to do so: the underlying algorithm is
not designed for a spatial context, thus, all the dimensions are
treated equally. Moreover, Alice notices that the system fails to
consider cases when she incorrectly identifies anomalous cases
and provides false feedback. The reason is that her judgment is
based on the analysis of incomplete observed data, for example,
traffic cameras are sparsely distributed among specific areas, re-
sulting in difficulties in monitoring the situation for the system.

According to the use scenario, we identified the following
design requirements for our system.

DR.1 Updating analytics based on human feedback: The sys-
tem should provide an interaction mechanism that ac-
cepts feedback from users in real-time to dynamically
rectify the anomaly detection model.

Tolerating potential false feedback: Users might pro-

duce false feedback due to the difficulty in perceiving

the environmental context. The system should include
environment complexity into computations and better
tolerate false feedback.

DR.3 Allowing the integration of different anomaly detection
algorithms: To meet different detection requirements,
any algorithm that yields the probability of finding
anomalies in a given environment can be embedded
into the framework.

DR.2

IV. ALGORITHM FRAMEWORK AND IMPLEMENTATION

In this section, we introduce our interactive context-aware
anomaly detection algorithm framework and two algorithm im-
plementations, respectively, based on Bayes’ theorem and metric
learning.
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Algorithm 1: Interactive Context-Aware Anomaly Detec-
tion Framework.
Input: ]%= {61,---,rn(}); Q=1{q1,---qnlqi € [0, 11}
1 PO = (p0 p 0 pP}  Initialization(E, Q)
2 while frue do
3 if user cannot find more anomalies then
4 ‘ break;
5 end
6 J — GetJudgement({(ri,, fi,),...(rj., fi)lfy, €{0,1}})
7
8

PO = (p\V, ... p}  update(J,E.Q.PSD)
end

A. Interactive Context-Aware Anomaly Detection Algorithm
Framework

The goal of the framework is to help decision makers effi-
ciently explore a large geographic environment and locate the
regions that contain anomalous entities. Based on the design
requirements, we achieve the goal by designing an anomaly de-
tection mechanism that has the following characteristics:

1) interactively adopts human judgments to reflect users’ de-

cision boundary onto the global environment;

2) includes environmental contexts into computation;

3) light-weighted and independent of the underlying

anomaly detection techniques.

As described in Algorithm 1, the environment E is uni-
formly partitioned into a set of n equal-size cells, i.e., n re-
gions {r1,7a,...,r,}. We assign the environmental complex-
ity @ to each of these n regions as {qi,q2,...,qn}. Then,
the global environment F and the environmental complexity )
are used as the inputs for the probability initialization function
initialization(-), which generates the initial probability P of
finding an anomaly in each region as {pgo) , pgo), R p%o)} (line
1). Every time when a user inspects a region, a binary feedback
fi indicating whether or not he or she finds an anomaly in the re-
gion 7; is recorded. Suppose that the user labels & regions in his
inspection, (75, fi,), ..., (7., f;.) is used as the input to com-
pute user judgment .J (line 6). The probability update function
update(-) receives the human judgment J, the global environ-
ment F, the environmental complexity (), and the probability
PG=1 at step s — 1 to assign the new probability P(*) of each
region at step s (line 7). The iterative process described above
continues until the user indicates that no more anomalies can be
found (lines 3-5).

B. Implementation of Update Functions

We introduce two algorithm implementations based on
the above-mentioned framework. The first algorithm employs
Bayes’ theorem [20], which handles user feedback one at a time.
The second algorithm is designed based on metric learning [21],
which is able to process multiple feedback simultaneously. A pri-
ori knowledge of the number of anomalies is required to use the
first implementation while no such knowledge is required for the
second implementation. Both of these implementations employ
one-class support vector machines (SVM) [22] to generate ini-
tial probability values due to its benefits of unsupervised feature
learning, computational efficiency, and a good performance [23].

1) Implementation I: The first implementation employs the
Bayes’ theorem [20] P(A|B) = P(B|A)P(A)/P(B), which
calculates the probability of event A given event B is observed.
The Bayes’ theorem updates the priori probability with the ob-
servation and yields the posterior probability. Therefore, it can be
used in real world scenarios to search for regions of interest in a
large environment [24]. In our case, we assume that there is only
one anomaly in one of the investigation regions {r1,...,7,}.
Let A; denote the event “an anomaly exists in the ith region” and
let B; denote the event “the user thinks that the jth region does
not contain an anomaly.” The probability P(B,) is positively
correlated with the environmental complexity of this region, g;.
Thus, P(A;|B;) represents the probability of an anomaly exists
in the region ¢ when a user perceives the region j as normal. Note
that the assumption is simplified for computation and the Bayes’
theorem based method also holds true when multiple anomalies
are to be observed. We first normalize the probability for each
region by the total number of anomalies. Every time when an
anomaly is found, the denominator of the normalization is re-
duced by 1 and the probability of all the remaining regions are
reduced with the same rate.

Based on the Bayes’ theorem, we define the probability update
function update(-) in Algorithm 1 as

update(r;, pi, gi, fj = 0) = P(A;| Bj)

P(Bi|Ai)P(Ai)

_ oA = e A A
T ) P(BjlANP(A) Di : :
P(B;) = Tp0 gt #J-

Here, P(A;) = p; indicates the probability of an anomaly in
the region r;. ¢; and f; represent the environmental complex-
ity and user feedback of this region, respectively. Note that the
above-mentioned update rules only take negative user feedback
(f; = 0) for update, that is, it updates the global situation only
when the anomaly has not been found. Here, we assume that
there is only one anomaly to be detected in the investigation
space. Thus, a failed attempt of finding the anomaly at one re-
gion will increase the conditional probabilities of detecting it in
other regions. Once the anomaly in one of the regions has been
found (f; = 1), this region r; will be removed from the investi-
gation space by setting p; = 1, and the user can start to find the
next anomaly in the environment.

2) Implementation II: The second algorithm implementa-
tion embeds metric learning into one-class SVM. One-class
SVM [22] computes the anomaly score using the distance from
data point to the decision boundary, which can be modified by
users’ updates. Its key component, the kernel function, com-
putes the distance in a hyperspace and projects the distance into
the original data space. We modify the kernel based on metric
learning [21]. Under the new metric, points in the same class will
have small distance while points in different classes will have
larger distance. Next, we will explain the how one-class SVM is
implemented and how metric-learning is used to refine the dis-
tance function in one-class SVM that determines the anomaly
score of each data point.

3) One-Class SVM: We use a set of data points {z1,...,
Zm } to represent entities to be observed in the environment E.
Each data point x; is associated with a multidimensional vector
in the feature space. The data points are randomly distributed in
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E, among which one or more data points are anomalies. The re-
gion that contains one or more anomalies is defined as an anoma-
lous region. One-class SVM detects anomalies by finding a tight
boundary in the feature space that encloses a majority of highly
related data points, while points outside the boundary are iden-
tified as the anomalies. The distance between the points and the
boundary indicates the anomaly score. The algorithm projects
the data points into a latent hyperspace of a higher dimension,
where the points can be easily separated by a hyperplane. Here,
the equation representing the hyperplane is defined as

m

ZwiK(x,xi) —p=0 (2)
i=1

where w; and p are parameters learned from the input data, x
and x; represent the data point of interest and one of the data
points in the dataset, respectively. The kernel function K (x, x;)
can be interpreted as estimating the distance between the two
data points in a hyperspace. Usually, Gaussian kernel is used as
itis the most frequent one used in nonlinear cases. The algorithm
finds the tight boundary by ensuring the distance from a point to
the hyperplane in the hyperspace to be equivalent to the distance
from the same point to the boundary in the feature space. Here,
the distance function is as follows:

dist(x;) = Z w; K(xi,%35) — p 3)
j=1

where w; and p are parameters learned from the input data,
x; and x; represent the data points in the dataset. Intuitively,
when a data point lies on the hyperplane, the distance is equal
to zero; otherwise, the distance has a positive or negative value,
indicating the point lies inside (normal) or outside (abnormal)
the boundary, respectively.

4) Metric Learning: To refine the distance function in one-
class SVM, we first introduce a new kernel function (K,,) based
one metric learning

“

K (x,%;) = exp (_dzM(X’X‘)>

202

where x and x; represent the data point of interest and one of
the data points in the dataset, respectively. d;(+) is a distance
metric defined as

d]u(xi,x_j) = \/(Xi — Xj)TM(Xi — Xj). (5)

The goal of the update is to find one optimal matrix M * that
best matches the user judgment in terms of separating the normal
and abnormal situations. To this end, we then employ the least-
square metric learning (LSML) [25], in which M * can be learned
based on a set of constraints C in the form of

(6)

where x, and x;, are data points from the same class while x.
and x4 are data points in different classes. C ensures that the pairs
of points within the same class to be closer than the pairs from
different classes. C can be automatically generated based on user
feedback f;, the probability p;, and the environmental complex-
ity g; for the ith region. Here, M( f;, p;, ¢;) is used to denote the
function that generates the optimal matrix M * and Algorithm 2

C = {(Xa,Xb,Xc,Xd) : drr(Xa, Xb) < dar(Xe,Xd)}
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Algorithm 2: Metric Learning Algorithm for M(f;,pi.q;)-

Input: f;,pi,qi, C=a;

A=A{rjlp; € P,pj > threshold};

N = {ri|px € P, pr < threshold};

for j=1 to NumOfConstraints do

a,b,c « sample(N), d « sample(A);
C <« CUf{(a,b,c,d)}

end

if f; == I then

A=A U I,

for j = 1 to n do

a «— sample(A), b «— sample(N);
C « CU{(ri,a,ri,b)}, with probability 1—g;;

o NN R W N -

—
-

end

"
N

else

-
s W

N = NUI‘,‘;

for j = 1 to n do

a < sample(N), b «— sample(A);

C « CU{(ri,a,ri,b)}, with probability 1 —g;;

—
[ Y]

"
]

end

it
*®

end
M* «— LSML(C);

=
S e

describes the metric learning algorithm for M( f;, p;, ¢;). A de-
notes the abnormal training set while A/ denotes the normal
training set, p; is the probability of observing an anomaly in the
region j. If p; is greater than a threshold, there is a high probabil -
ity that the region j contains an anomaly. These high-anomaly
regions constitute set .4 while those low-anomaly regions con-
stitute set A/ (lines 1-2). In our case, we set the threshold as 0.5.
The reason is that the values of p are evenly distributed between
[0, 1], so the midpoint, 0.5, is selected. Accordingly, A and N
are of roughly the same size. NumOfConstraints is a parameter
that fixes the sample size of constraints, which is empirically set
to the number of regions in our case. a, b, ¢, and d are sampled
from A and N (lines 3-6). Here, sample(-) is a random sam-
pling. If the user detects an anomaly in the region r; (line 7),
r; is appended to the set A4 (line 8). Then, the new constraints
(r;,a,r;,b) reported by the user are added to the constraints
collection C with probability 1 — ¢;, meaning that the user judg-
ment on the regions with less environment complexity are more
reliable and these regions are more likely to change the metric
(lines 9-12). Otherwise, the region 7; is appended to the set N’
and the related constraints are added likewise (lines 13—19).

Based on the (3)—(5), the probability update function
update(-) in Algorithm 1 is as follows:

update(rs, pi, ¢i, fi)

@)

where x; and x; represent data points in the dataset,
M( f;, pi, q;) denotes the function that generates the optimal ma-
trix M*, N (-) normalizes the results into [0, 1]. o is a free param-
eter to tune the fitness and smoothness of the decision boundary.
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In our case, o is set it to 1. N(-) is conducted on all the regions
whenever the probability is updated. We use min—max normal-
ization on each region and normalize the results into [0, 1]. The
formula of normalization is: N(r;) = (p; — pm)/(Pa — Dm)s
where p; is the anomaly score for region r;, p,,, and pys de-
note the minimum and maximum scores among the n regions,
respectively.

V. EXPERIMENT DESIGN

To evaluate the effectiveness of the algorithm framework in
supporting detect anomalies and compare the performance of
the two algorithm implementations under different conditions,
we designed a controlled user study. In this section, we describe
the details and rationales of the experiment design.

A. User Task

We design tasks that simulate real-world scenarios of anomaly
detection, in which a small portion of potential anomalies needs
to be found among a large collection of data points distributed
in a two-dimensional (2-D) area. Users are required to find the
anomalies and label the regions that contain these anomalies.
Hence, the user task is described as follows.

Locate the regions that contain anomalous entities (i.e., the
data points that have different feature values compared with that
of other points) in a 2-D spatial environment.

In this task, the primary variable to be tested is the choice
of the algorithms (i.e., No-Update where anomaly detection
is implemented without situation update (baseline), Bayes-
Update, and Metric-Update). Additionally, the study tested two
more variables including 1) the scale of the investigation space,
which is determined by the number of grids (denoted as g?) and
2) the number of anomalies to be found in the investigation
space (denoted as n,). We determine the proper setting of
the two variables g2 and n, by conducting a pilot study with
20 participants. Based on the results of the pilot study, the
number of grids g2 is set to either 10? (small) or 152 (large),
and the number of anomalies n, is set to either 3 (small)
or 7 (large). In the formal user study, we defined four task
including 77 (G10-A3): finding three anomalies in 10 x 10
grids, 72 (G10-A7): finding seven anomalies in 10 x 10 grids,
T3 (G15-A3): finding three anomalies in 15 x 15 grids, and T4
(G15-A7): finding seven anomalies in 15 x 15 grids. Each task
is repeated for three times to reduce random noise.

B. Dataset

We synthesized a testing dataset simulating all of the
aforementioned task conditions. We first generated a collec-
tion of data points from multivariate Gaussian distribution
with mean g = (1,1,1,1,1,1)7 and covariance matrix 3 =
diag{1,1,1,1,1,1}. These data points are grouped into the nor-
mal points (distance from the mean p were less than 30) and
abnormal ones (distance greater than 30). Each data point is
associated with a 6-D vector. We then placed these points ran-
domly in a 2-D plane. The probability p is initialized by the
anomaly score output from one-class SVM with an untrained
Gaussian Kernel.
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Fig. 1. Evaluation curves of the three algorithms. (a) and (b) Drawn from the
testing dataset. (c) and (d) Drawn from the China air quality dataset on January
15, 2017.

C. Preliminary Test

We first ran a preliminary test to evaluate the performance
of the three algorithms (No-Update, Bayes-Update, Metric-
Update) on the testing dataset when no human interaction is in-
volved. We let the three algorithms always pick the most anoma-
lous region and make an update of the current situation. Receiver
operating characteristic (ROC) curves were then generated by
comparing the perceived labels with the original labels of these
updated regions. Fig. 1(a) and (b) shows that both Bayes-Update
and Metric-Update outperform No-Update while Bayes-Update
is slightly better than Metric-Update.

D. Study Hypotheses

Our hypotheses were formed as follows.

H.I1 The algorithm framework will enhance the user perfor-
mance of detecting anomalous entities in the environ-
ment.

Users will achieve higher task accuracy in detecting
anomalous regions using Metric-Update than Bayes-
Update and No-Update.

User will spend less completion time in detecting anoma-
lous regions using Metric-Update than Bayes-Update
and No-Update.

The preliminary test suggests that Metric-Update outperforms
Bayes-Update and No-Update when no human interaction is in-
volved. As human might have different observations regarding
our visualization and interaction design, we posed H.2 to fur-
ther compare task accuracy of the three algorithms when user
interaction is involved. We hypothesized that users would spend
less completion time using Metric-Update (H.3) as it accepts

H?2

H.3
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Fig. 2. User study interface. (a) Global view. (b) Detail view. The results

in the detail view with different environmental complexity. (c) ¢ = 0.1. and
(d)g=0.8.

multiple feedback simultaneously. Based on the accuracy (H.2)
and time (H.3), we posed the overall hypothesis H./ that our
algorithm will enhance user performance.

E. Task Performance Measures

To quantify user performance of detecting anomalies via dif-
ferent algorithms, we use task accuracy and completion time.

Task Accuracy: There are two measures of accuracy: the pre-
cision and recall rate. Our pilot study showed that the precision
rate was not a proper measure to reflect the accuracy compared
to the recall rate, as users rarely made mistakes in identifying
anomalous grids. As a result, the recall rate was selected as the
measure of accuracy in the user study.

Completion time: The completion time measures the duration
starting at the time when the dataset is displayed to users, and
stopping at the time when users click the “next” button to be-
gin the next trial, which contains both the inspection time and
response time. Users can click the “pause” button when having
a break, during which the time recorder is held up.

FE. User Interface

To evaluate how well each algorithm in our framework help
users detect anomalies in the environment, we design an user
interface with two coordinated views, the global view and detail
view, as shown in Fig. 2.

Global view: The global view [see Fig. 2(a)] displays an
overview of the anomalous information in the environment. We
overlaid equal-sized grids to uniformly partition the environ-
ment to be investigated. Each grid represents a region, with the
color illustrating the probability of containing an anomaly in this
region. A grid with darker blue indicates that the region has a
higher probability of containing an anomaly (i.e., high p value).

Detail view: The detail view [see Fig. 2(b)] shows individual
entities in a specific region that the user has selected in the global
view. Each data point represents an entity, with the opacity illus-
trating whether the entity is an anomaly. An opaque blue point
indicates an anomaly while a translucent blue point encodes a
normal entity. Here, we selected opacity to differentiate between
anomalous and normal entities as it can be also used to show en-
vironmental complexity ¢ through the overlapping rate of the
points. That is, a set of highly overlapped translucent points will
result in difficulties in identifying opaque ones. For example,
by comparing Fig. 2(c) and (d), we found that the region with
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higher environment complexity [see Fig. 2(d)] is more difficult
for users to identify the anomaly (i.e., opaque blue point).

We control the environmental complexity via the distribution
of the data N'(0, 1 — ¢), where N () is the normal distribution.
In the user study, the environmental complexity of each grid in
each trial is randomly determined.

During the process of anomaly detection, a user can first in-
vestigate the most suspicious region in the global view by hov-
ering on the grid that has the highest p value, that is, the region
shown in the darkest blue color. Once the focal region is identi-
fied, he or she can then inspect its data points in the detail view.
Based on his/her judgments of these data points, the user can
label the grid in the global view; a single-click indicates the re-
gion indeed contains an anomaly, which can be canceled by a
double-click. Additionally, the grids that have been hovered by
the user are marked with thick black borders to avoid duplicated
investigations. The user can also submit his/her judgments (i.e.,
the labels of grids) to the back end by a right-click whenever
he or she wants, the algorithms will automatically update the p
value for each grid and its corresponding color based on user
feedback.

Before integrating the visual interface into the framework, the
pilot study also investigates 1) whether the environmental com-
plexity determined by N (0, 1 — ¢) align with users’ perception
and 2) the “accuracy-q” correlation regarding different number
of data points in a grid. The results suggest that our design of
environmental complexity align with users perception and 30
points per grid is the best setting.

VI. USER STUDY I

In this section, we first describe the study method, followed
by the analysis results and discussions.

A. Method

We recruited 18 participants (9 females) with an average age
0f 22.06 (SD = 1.95) for the user study with the goal of evaluat-
ing and comparing three algorithms, No-Update, Bayes-Update,
and Metric-Update, implemented in the interactive context-
aware anomaly detection framework. Before the study, we con-
ducted a 20-min tutorial session, during which the concept of
anomaly detection and its application in real-world scenarios
were briefly introduced. Next, we described in detail the frame-
work with the proposed algorithms, the user interface, and the
interactions. In the practice session, the participants were in-
structed to use the system with a sample dataset.

The study consisted of three sessions, each of which involved
one of the three algorithms. In each session, participants com-
pleted four tasks, 7/ (G10-A3), T2 (G10-A7), T3 (G15-A3), T4
(G15-A7)). Both the task accuracy and completion time were
recorded automatically for later analysis. We counterbalanced
the order of the three sessions as well as the order of four tasks
to avoid learning effects. Upon the completion of the three ses-
sions, we asked the participant to complete a questionnaire. The
user study took approximately 45—55 min.

This study was performed on a 13.3-in laptop computer with
adisplay resolution of 2560 x 1600 and each trial was displayed
in a 2000 x 1200 window with a white background. The size of
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Fig. 4. (a) Accuracy and (b) completion time for 15 x 15 grids (large).

each grid was adjusted automatically according to the number
of grids ¢°.

B. Result Analysis

We now report the quantitative results from the above-
mentioned user study. We first analyze the effect of two
study variables (number of the grids and anomalies) on the
task performance. We then compare the accuracy and com-
pletion time of three algorithms (No-Update, Bayes-Update,
and Metric-Update). Finally, we show the results form the
poststudy questionnaire. Repeated Measures ANOVA (RM-
ANOVA) was applied to examine if there is a significant dif-
ference. Bonferroni correction was used to conduct the pairwise
comparisons.

1) Validation of Variables: To evaluate the effect of the num-
ber of grids and anomalies, we analyzed user performance under
different conditions.

Small grid number (10 x 10): RM-ANOVA shows that the
number of anomalies significantly affected user performance in
terms of the accuracy (F'(2,34) = 15.81,p < 0.05) across all
three algorithms [see Fig. 3(a)]. The analysis results showed no
significant difference in completion time [see Fig. 3(b)]. Com-
pared to No/Bayes-Update, Metric-Update was the least sensi-
tive to the change of anomaly numbers in both accuracy and
time.

Large grid number (15 x 15): Fig. 4(a) illustrates that the
accuracy was significantly lower when the number of anoma-
lies increased (F'(2,34) = 12.65,p < 0.05) across all algo-
rithms. Fig. 4(b) suggested that the completion time was also
significantly influenced by the anomaly number (F'(2,34) =
68.23, p < 0.01). RM-ANOVA showed that Metric-Update and
Bayes-Update were less influenced in both task accuracy and
completion time than No-Update.

00 02 04 06 08 10 0 20 30 4 5 6 70 8
Accuracy Time (seconds)
(a) (b)
Fig. 5. (a) Accuracy and (b) completion time for three anomalies (small).
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Fig. 6. (a) Accuracy and (b) completion time for seven anomalies (large).

Small anomaly number (3): Fig. 5(a) shows that the ac-
curacy of both No-Update and Bayes-Update significantly
decreased (No-Update: F(2,34) = 19.95,p < 0.05; Bayes-
Update: F'(2,34) = 10.17, p < 0.05) when the grid number in-
creased. The accuracy of Metric-Update was less sensitive to the
number of the grids. In terms of completion time, only Bayes-
Update was significantly influenced (F'(2,34) = 63.79,p <
0.01) [see Fig. 5(b)].

Large anomaly number (7): Metric/Bayes-Update showed
no significant difference between the two grid numbers while
No-Update was significantly influenced in terms of both accu-
racy (F'(2,34) = 23.28,p < 0.01) [see Fig. 6(a)] and comple-
tion time (F'(2,34) = 46.36, p < 0.01) [see Fig. 6(b)].

2) Comparison of Algorithms: We compare the task accu-
racy and completion time of the three algorithms under four
task conditions, T1,T2,T3, and T4.

Task accuracy: When grid number was either small or large,
significant differences were observed among the three algo-
rithms in the two levels of anomaly number, as shown in
Fig. 7. Moreover, post-hoc analysis showed that in most of
the cases (T1 (G10-A3): F(2,34) = 6.05,p < 0.05, T2 (G10-
AT): F(2,34) =34.11,p < 0.01, T4 (G15-A7): F(2,34) =
21.36,p < 0.01), Metric-Update significantly outperformed
Bayes-Update in accuracy (H.2 accepted).

Completion time: Fig. 8 showed a significant difference
among the three algorithms. Those showing a difference were
associated with grid number as well as anomaly number.
Moreover, a post-hoc analysis showed that in most of these
cases (i.e., T1 (G10-A3): F'(2,34) = 79.16,p < 0.01, T2 (G10-
AT): F(2,34) = 98.32,p < 0.01, T4 (G15-A7)): F(2,34) =
147.21,p < 0.01, Metric-Update significantly outperformed
Bayes-Update in completion time (H.3 accepted). As a result,
we verified that our framework significantly enhances user per-
formance in terms of accuracy and time (H./ accepted).
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3) Poststudy Questionnaire: The poststudy questionnaire
was designed to qualitatively estimate the three algorithms.
Questions 1-6 asked users to rate the ease of use and useful-
ness of each method for anomaly detection using a five-point
Likert scale, as shown in Fig. 9(a). Questions 7-10 asked users
to choose the method that they thought the most effective un-
der various task conditions (i.e., larger or smaller grid number
and larger or smaller anomaly number), as shown in Fig. 9(b).
The results suggest that Metric-Update is favored by most of the
participants, which supports the quantitative findings.

C. Discussion

We now discuss why and when Metric/Bayes-Update are use-
ful and what are the challenges of using the framework.

Why did Metric-Update outperform Bayes-Update? Accord-
ing to the statistics, Metric-Update outperformed Bayes-Update
on both the accuracy and completion time. Bayes-Update uses
human judgment as an observation to update prior anomaly
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Fig. 9. Questionnaire statistics. (a) Users’ rating of different algorithms with

respect to their usefulness and ease of use (**: p < 0.01 and *: p < 0.05).
(b) Users’ preference of the three algorithms.

scores. Equation (1) also shows that Bayes-Update updates the
anomaly scores of unchecked grids (i # j) with the same fac-
tor, resulting in the same level of color changes in grids. These
changes may be difficult for users to perceive. Metric-Update,
on the other hand, involves human judgment and data features
into calculation. It uses human judgment as additional labels
for training and update the hyperplane that separates abnormal
and normal data points and, thus, achieves higher accuracy. In
terms of completion time, users suggested that it was time con-
suming to update after each check when using Bayes-Update or
to randomly guess when using No-Update. On the other hand,
Metric-Update adapts a simultaneous update strategy and, thus,
costs less time.

When should Metric-Update be used? Fig. 9 shows that
Metric-Update was the most preferred method across all con-
ditions. In terms of robustness, it was also less sensitive to the
variation of the scale of the investigation space and the num-
ber of anomalies (see Figs. 3-6). Therefore, Metric-Update is
recommended as the first choice in most real-world scenarios,
especially in the complex and large-scale cases.

When should Bayes-Update be used? Fig. 9 shows that the
preference for Bayes-Update was higher in T1 compared to T2,
T3, and T4. Some participants suggested that it immediately
responded to the clicks and, thus, provided good user experience.
The reason is that Bayes-Update does not use feature values of
data for calculation in each update, resulting in quick response.
Figs. 7 and 8 also illustrate that Bayes-Update achieved good
performances in T1 and T3 where the amount of anomalies is
small. Therefore, Bayes-Update is applicable in simple cases
due to its quick response.

VII. USER STUDY II

To further evaluate the effectiveness of the framework and
algorithms in real-world scenarios, we conducted another user
study with 18 participants and an interview with an expert who
is a professor in environmental engineering using a real-world
dataset. Both the participants and the expert were required to
monitor air quality in China and find anomalous regions where
the air has been polluted.

A. Dataset

We used the air pollutant concentration dataset (http://pm25.
in) collected from more than 1400 air quality monitoring stations
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located in 367 urban cities as the real-world dataset. These mon-
itoring stations record six pollutants, including nitrogen diox-
ide (NO»), sulfur dioxide (SOs), ozone (O3), carbon monoxide
(CO), and particulate matter (PM2.5, PM10).

We first standardized the value of each pollutant based on the
individual air quality index (IAQI) to facilitate a comparison.
Then, we used a 6-D feature vector to capture air quality in
a region recorded by the local monitoring station. The feature
vector indicates the average IAQI value of the six pollutants.
Specifically, the likelihood of the air in a region been polluted p
is calculated using one-class SVM by comparing the features of
the region to that of other regions as well as the historical data.
The environmental complexity ¢ is negatively proportional to the
number of air quality monitoring stations inside the region (note
that ¢ is not visualized in iDetector). Based on the air quality
index (AQI) and health implications, the monitoring stations
whose AQIs are above 200 are defined as anomalies.

B. iDetector

We designed an interactive anomaly detection system, iDe-
tector, for our second user study. iDetector consists of two coor-
dinated views, the global view and detail view. The global view
[see Fig. 10(a)] display a map of China overlaid with equal-
sized hexagonal grids that uniformly segment the environment.
It shows an overview of anomalous regions with the color of
each grid illustrating p of a region. A region’s color is blend-
ing between red and blue to, respectively, encode the high and
low anomaly score. Gray grids indicate that no data have been
collected from those regions.

Fig. 10(b) shows the detail view of air quality in a focal region.
iDetector visualizes air quality recorded by each monitoring sta-
tion as a radar chart with each axis indicating a pollutant. In the
glyph, the current situation of air quality is drawn in red in the
foreground while the standard baseline is drawn in yellow in
the background. This design facilitates a fast comparison and
allows users to quickly identify an anomaly when the current
score is greater than the baseline (with the red region exceeding
the yellow boundary).
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User interface of the prototype system, iDetector, consists of two major views. (a) Global view. (b) Detailed view.

C. User Study and Result Analysis

The second user study follows the same protocol used in the
first user study. A total of 18 participants (11 females) with an
average age of 24.94 (SD = 2.60) were recruited. In each ses-
sion, participants used iDetector with one of the three algorithms
implemented (No-Update, Bayes-Update, Metric-Update) to ex-
plore the air quality dataset. Note that the performance of the
three algorithms on the real-world dataset was evaluated using
ROC/PR curves [see Fig. 1(c) and (d)].

Task accuracy: The results show significant difference in ac-
curacy (F'(2,34) = 59.14, p < .01). The post-hoc test suggests
that participants achieved significantly higher accuracy when
using Metric-Update than Bayes-Update and No-Update (H.2
accepted).

Completion time: Significant difference is found in time
(F(2,34) = 38.85,p < .01). The post-hoc test suggests that
participants spent significantly less time using Metric-Update
than Bayes-Update and No-Update (H.3 accepted). As a result,
we verified that our framework significantly enhances user per-
formance in terms of accuracy and time (H./ accepted).

D. Expert Interview

The expert interview used the air quality dataset on January
15, 2017 and iDetector with Metric-Update implemented. Dur-
ing the process, the expert first identified the most suspicious re-
gions at first glance in the global view. “It is intuitive, I searched
for the regions shown in the darkest red, and it turned out to be
Henan Province based on the geographic information™ [high-
lighted via a yellow circle in Fig. 10(a)]. He then hovered one of
these regions with the highest anomaly score (highlighted via a
red circle) and explored its detail view [see Fig. 10(b)].

The detail view shows radar charts that visualize the air
quality recorded by the five monitoring stations in the focal re-
gion. By comparing the current situation (red) with the baseline
(yellow) in each chart, the expert found that even though the
values of several pollutants are high, most of them are within
the normal range. He considered it as a normal situation, and
thus, double-clicked to reject the result and label the region as
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Fig. 11.  Anomalous region with high air pollution risk (a region in Xinjiang,

China) revealed in (a) global view and (b) detail view.

normal and right-clicked to commit the change to iDetector for
situation update. This update resulted in color changes in other
regions in the global view. “I noticed that some regions turned
from red to blue.” The expert explored these grids and found
that the regions now turned to normal were the ones similar to
the region he had labeled. “I see, it learned from what I did and
made similar judgment automatically. It is smart!” The expert
also noticed that the color of some grids turned to darker red.
He investigated these grids in the detail view and found that the
radar charts display extremely high PM2.5 and PM10 values
compared to the baseline. These regions were then marked as
anomalies by the expert and the global environment was update
accordingly.

Another suspicious area that caught the expert’s attention is in
Xinjiang Province shown in dark red in Fig. 11(a) (highlighted
via an orange circle). He explored a specific region in this area
in the detail view [see Fig. 11(b)]. By evaluating the pollutant
values, he confirmed that this region had been polluted with
high PM2.5 and PM10, and thus, single-click to mark it as the
anomalous region. After situation update, he noted that “this
time my judgment did not result in obvious color changes in
other areas and I was wondering why.” We explained to him that
his decision is of low confidence due the high environmental
complexity ¢ in this region, that is, data collected from only
two monitoring stations is available for analysis. Knowing this
reason, the expert was impressed by our technique and suggested
“this is brilliant! I can imagine this mechanism to be used in
many applications in practice.”

VIII. CONCLUSION

In this paper, we introduce an online interactive algorithm
framework to support the analysis process of anomaly detection
and two algorithm implementations based on Bayes and metric
learning, respectively. The results of the two user studies
indicate that the framework is useful to identify regions that
contain anomalous entities and the Metric-Update algorithm
significantly outperforms the Bayes-Update algorithm and the
baseline in terms of accuracy and completion time. The case
study with a domain expert further verified the usefulness of
the proposed technique. Future work includes refining the al-
gorithm to provide smoother update results, capturing temporal
and spatial features for analysis, and applying our technique to
more real-world applications.
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