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Clinical decision support systems (CDSS) are widely used to assist with medical decision making. However,
CDSS typically require manually curated rules and other data which are difficult to maintain and keep up-
to-date. Recent systems leverage advanced deep learning techniques and electronic health records (EHR) to
provide a more timely and precise result. Many of these techniques have been developed with a common
focus on predicting upcoming medical events. However, while the prediction results from these approaches
are promising, their value is limited by their lack of interpretability. To address this challenge, we introduce
CarePre , an intelligent clinical decision assistance system. The system extends a state-of-the-art deep learning
model to predict upcoming diagnosis events for a focal patient based on his/her historical medical records. The
system includes an interactive framework together with intuitive visualizations designed to support diagnosis,
treatment outcome analysis, and the interpretation of the analysis results. We demonstrate the effectiveness
and usefulness of CarePre system by reporting results from a quantities evaluation of the prediction algorithm,
two case studies and interviews with senior physicians and pulmonologists.
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1 INTRODUCTION
Medical decision making is fraught with uncertainty. It involves not only deciding what disease
a patient may have, but also which treatments to choose from a set of possible alternatives [35].
Motivated by these challenges, clinical decision support systems (CDSS) have been increasingly
used in recent years.
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CDSS are computer-based systems which are integrated into clinical workflow to help physicians
determine which questions to ask, which tests to order, and which procedures to perform [39, 43].
However, typical CDSS require manually curated knowledge bases that are difficult to maintain
and keep up-to-date, thus limiting their usage in real world clinical scenarios [32].
The rapid development of machine learning techniques and the increasing availability of elec-

tronic health records (EHR) has stimulated great interest in harnessing EHR data to help drive
CDSS. It is widely believed that high quality EHR data in the context of CDSS has potential to
reduce errors and provide more precise results [5, 7, 8, 26]. To this end, many techniques have been
developed to extract meaningful insights from EHR data with a common focus on the prediction
of upcoming medical events (e.g., a diagnosis or treatment) [13, 20]. In particular, a series of deep
learning-based prediction models [11, 12, 50] have successfully demonstrated that high accuracy
predictions are possible. However, the utility of these methods is greatly limited by their lack of
interpretability. The ideal intelligent medical event prediction system must provide results that are
both accurate and interpretable through a user-friendly interface.

However, achieving both accuracy and interpretability is challenging as they are often achieved
via contradictory design decisions. The highest accuracy prediction is often obtained when using
more complex prediction methods, whereas simpler models with lower accuracy are often more
interpretable [6]. Attempts have been made to improve the interpretability of more complex
prediction models [12, 50]. However, these approaches are still too complex for users with little or
no technical training, such as medical doctors.
To address the above issues, we introduce CarePre , an intelligent clinical decision assistance

system. CarePre predicts the risks of a patient being diagnosed in the future with certain diseases
based on his/her historical electronic health records. The system extends a state-of-the-art deep
prediction model that is specifically designed for predicting medical events, and employs intuitive
visualization techniques to help interpret the prediction results without reducing the complexity of
the underlying model. In particular, CarePre supports interpretation by (1) framing the prediction
results in the context of a group of similar patients, and (2) analyzing the factors that influence the
prediction results to help physicians make more informed clinical decisions. The contributions of
the paper include:

• System Design. We introduce a comprehensive clinical decision assistance system for
predicting a patient’s risk of future diagnoses for certain diseases, and estimating the outcome
of different treatments based on the patient’s electronic health records. The system design is
guided by results from a pilot study with two senior physicians.

• Exploratory Analysis. We propose an interactive framework that supports detailed explo-
ration for both (1) interpretation of prediction results in the context of historical and similar
medical records, and (2) analysis of potential treatment outcomes.

• Evaluation. We evaluate the system via a quantitative evaluation of the algorithm, two
case studies using real-world medical records of a group of cardiac and respiratory patients,
respectively, and interviews with seven senior physicians. We describe the case studies
and feedback collected from the interviews. These results provide evidence regarding the
usefulness of the system.

2 RELATEDWORKS
In this section, we provide an overview of previous research that is most relevant to our work
including: (1) clinical decision support systems (CDSS), (2) prediction models in medicine, and (3)
visualization of electronic health records.
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2.1 Clinical Decision Support Systems
Existing clinical decision support systems (CDSS) can be primarily summarized into two major
types: Knowledge-based and Non-knowledge-based [3]. Knowledge-based systems, which are most
commonly used, typically organize knowledge about diseases and the associations of symptoms in
the form of if-then rules. For example, Dayan et al. [15] introduced the traumatic brain injury (TBI)
prediction rules in a CDSS to foresee risks of TBI. Laleci et al. [28] utilized a guideline-based CDSS
to help manage the personal care plans of elders. Rodriguez et al. [42] introduced a “send & hold”
system, utilizing clinical decision support rules to reduce the avoidable vitamin testing.

Non-knowledge-based systems are usually developed based on machine learning techniques that
can automatically learn the associations between symptoms and diseases from electronic health
record (EHR) data [3]. It has been shown that EHR data not only helps improve the precision of
analysis results [5, 18], but also greatly improves the robustness of a CDSS due to the availability of
rich and diverse EHR data gathered during the daily clinical encounters [11, 49]. When compared
to knowledge-based systems, these systems greatly reduce the human efforts required to manually
build and update a large knowledge database [32]. However, these systems typically suffer from a
lack of interpretablity of the analysis results [32], and a lack of user-friendly interfaces to facilitate
efficient results inspection [4, 8]. CarePre leverages the advantages of machine learning techniques
and electronic health records, while also providing a comprehensive visualization-based design to
support result inspection and interpretation.

2.2 Prediction Models in Medicine
Prediction models have played an increasingly important role in the medical domain, for both
diagnosis and prognosis [45]. Recent research has often focused on leveraging deep learning
techniques to make predictions more accurate and precise [52]. These techniques have been used to
support public health analysis [9, 54, 55], medical research [14, 47, 53], and clinical practice [1, 23, 29].
Some deep learning techniques have been developed to assess risk for specific conditions, such as
the diagnosis of heart disease [1, 40, 51], cancer [10, 14, 53], and mental health [2, 22, 41].
Most relevant to our work are the studies that also focused on predicting upcoming medical

events (e.g., a future diagnosis or treatment) based on electronic health records (EHR). Examples
in this area include Jagannatha et al. [23], who used EHR data to train a bidirectional recurrent
neural network (RNN) for medication and disease prediction. Choi et al. [11] developed Doctor AI,
a generic RNN model that use historical EHR to predict the clinical events as well as the time to
the next visit. Following this work, Choi et al. [12] further introduced Retain, a state-of-the-art,
high-accuracy prediction model that was specifically designed to predict ‘signal’ events (i.e, heart
failure) based on EHR data. Our system extends this model to predict multiple events, as motivated
by our design requirements.

Interpreting results from prediction models is a recognized challenge, and it is especially difficult
for models that leverage deep learning. Existing interpretation techniques can largely categorized
into two categories: (1) global model analysis, which employs visualization techniques to represent
the internal structure of a deep learning model [30, 31, 46], and (2) instance-based analysis, which
monitors changes to results in response to changes in model input [25, 27, 36]. CarePre adopts the
instance-based analysis approach via a set of interactive visualization designs that allow users to
adjust/delete/add medical events within a patients’ historical medical records and explore their
impact on the prediction result.
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2.3 Visual Analysis of Electronic Health Records
Many visual analysis systems have been developed for representing and analyzing electronic health
records. Most of these summarize a large set of EHR data into a flow-based representation that
reveals the frequent patterns of medical event sequences [33, 38] and the outcomes yielded by
different care plans [37, 48]. However, these techniques are typically challenged by event sequences
that have various length and contain large numbers of event types. These real-world properties
of medical data can often lead to cluttered and less meaningful visualizations when sequences
vary dramatically. To overcome this limitation, Gotz et al. [19] introduced DecisionFlow, in which
sequences with different length and large numbers of even types are visualized based on several
key events. This hides the complexity introduced by other non-key event types. Guo et al. [21]
introduced ET2, in which the sequences are aligned based on dynamic time wrapping and segmented
into stages shown with more details to help illustrate the progression of a disease in context of
a care plan. Du et al. [16, 17] introduced visual analysis systems to predict upcoming events or
recommend the next procedure by summarizing a set of similar event sequences without using any
prediction model, thus producing results with limited accuracy. [27] tried to interpret the prediction
results of upcoming events based on medical sequence data. However, the system is more designed
for artificial intelligence scientists rather than physicians. CarePre considers the requirements of
physicians and leverages many of the advances contributed by these visualization techniques, and
supports multiple visualization-based views to help physicians explore and interpret prediction
results for better clinical decisions.

3 PILOT STUDY

Fig. 1. The CarePre system contains nine interactively coordinated views, including (a) a profile view showing
the personal information of a patient; (b) a prediction view illustrating the prediction results as well as the
historical medical records of the patient; (c) a description view providing the detailed description of a disease
selected from the prediction view, (d) a patient similarity view measuring the similarity between the focal
patient and the archived patients; (e) a query view supporting a key-event-based query capability to select
specific patients; (f) a patient list showing similar patients retrieved from (d) or (e); (g) a similar patients
view comparing the prediction results to the outcomes of similar patients; (h) an outcome analysis view
allowing the examination of the outcomes of different treatment plans; and (i) a significance view showing
the influence of treatments on the risks of diseases.
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Our pilot study followed a multi-session design, and involved two senior physicians (P1−2) with
over 15 year’s clinical experience in two hospitals in a major city in China. In particular, both
physicians were associate directors of internal medical department and have sufficient diagnose
experience. The goal of the pilot study was to determine detailed requirements to guide the
subsequent system design.

Session 1: Initial Requirements.
We conducted an one-hour interview with each of the two physicians, during which we discussed

the challenges they encountered when making diagnosis. Both physicians believe it is important to
refer to a patient’s medical history when making diagnosis. For example, P1 mentioned:“Historical
medical records can help doctors make a more comprehensive judgement on the potential illness of
a patient, which is especially important for analyzing complications in chronic diseases.” However,
their diagnosis and treatment decisions are often made based on the patient’s current symptoms
and lab test results. As mentioned by P2:“We usually need to diagnose large number of patients
every day. Time is limited for us to fully review their medical history. ” They expressed a desire
for a tool that could automatically provide relevant diagnosis information based on a patient’s
medical history to avoid mistakes (diagnosis-supporting requirements). Moreover, they wished
the tool to be able to estimate potential outcomes when the doctors were to make treatment plans
(prognosis-supporting requirements). “When the patient’s condition is complex and we have
multiple treatment plans in mind, predicting the outcome for each treatment plan is especially
helpful in making decisions,” E1 explained, “It is also a more intuitive way for our patients to
understand our decisions.”

Session 2: Prototyping and Refinement. Based on results of Session 1, an interactive design
prototype was developed using figma1 by a professional designer (a co-author of this article). The
prototype was demonstrated to the two physicians to further refine the initial requirements to the
following detailed requirements.
R1 Support for predicting the risks of potential diseases. According to the physician in-

terviewees, predicting the risks of potential diseases based on historical record is useful in
verifying their initial diagnoses. For example, P1 stated that “I’ll confirm the diagnoses with
high risk and make further investigation to assess those with low risk.” P2 commented that
“I’ll be more confident in making decisions if the prediction is aligned with my judgement.”
Thus, the system should be able to automatically assess a patient’s historical medical record
to predict the risks of a set of potential diseases identified by the physicians.

R2 Support for exploring predictions under the context of historical sequences. Both
physicians mentioned that it is important to review predictions with historical records.
P1 explained that “Historical events can provide evidence for us to determine whether
the prediction is trustworthy”, and P2 felt “reviewing history sequence can help us better
understand the predictions.” Hence, the system should be able to illustrate the prediction
results within the context of the patient’s historical medial record to facilitate data exploration
and result interpretation.

R3 Support for easy comparison between the focal patient and similar patients. The
physicians expressed their need for leveraging the past experience in diagnosing and treating
patients with similar clinical pathways. As mentioned by P2: “Knowing how patients with
similar symptoms was diagnosed and treated before will provide us with more guidance
in making diagnosis and treatment plans.” Therefore, the system should be able to identify
patients with similar historical medical records and summarize their clinical pathways for
easy comparison.

1https://www.figma.com/
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Fig. 2. The interaction pipeline of CarePre system consists of three steps, including: (1) a pre-diagnosis step
in which physicians initially diagnosis a focal patient according to his/her symptoms and lab tests; (2) a
diagnosis-support step in which the system automatically estimates the risk of each the potential diseases
determined in the previous step, and in which physicians can verify the results by comparison to the medical
records of a set of similar patients; and (3) the treatment outcome analysis step in which physicians can
compare and evaluate the expected outcomes of different treatment plans.

R4 Support for identifying contributing factors in predictions. One common demand
proposed by the physicians is to make the prediction result easier to interpret. As P2 ex-
plained:“We sometimes do not trust the predictions generated by machines, especially when
it disagrees with our judgement. It would make a difference if the model can tell us the reason
of the prediction.” To this end, the system should be able to identify and communicate the
key factors that has a large impact on the prediction result.

R5 Support for exploring the outcomes of possible treatment plans. When discussed on
the requirements for supporting prognosis, P1 expressed a desire for simulating possible
treatment plans: “We usually have multiple treatment plans in mind. It would be great if the
tool can help us predict and compare the outcomes after taking those treatment plans.” P2 felt
the same way, and added: “It can also help us understand the effect of the drugs on the disease
through the exploration.” Accordingly, the system should help physicians explore changes to
possible treatment plans and illustrate the impact of those changes on the predicted outcome.

The entire prototyping stage took place over two months during which regular meetings with
domain experts were held. The prototype was iteratively refined to incorporate clinicians’ com-
ments and new requirements. This process resulted in a series of eight different design versions,
culminating in the final design described in the next section.

4 CAREPRE SYSTEM
Following the aforementioned requirements, we designed the CarePre system. This section provides
an overview of the system design and its key algorithms.

4.1 System Overview
CarePre is an intelligent system designed to assist physicians or other health professionals when
making decisions related to diagnosis and prognosis. The key functionalities of CarePre are (1)
prediction of a patient’s risk of being diagnosed with certain disease, and (2) estimation of the most
influential treatments, as determined based on a patient’s historical electronic health records (EHR).
In particular, the system coverts raw EHR data for a large number of patients into sequences of
medical events. Based on those sequences, the system predicts the future occurrence probabilities
of several given diagnosis events for a focal patient.
Fig. 1 illustrates the CarePre user interface. It consists of ten views, many of which utilize data

visualization techniques to facilitate an intuitive data representation and interpretation. These views
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can be categorized into three classes based on their functionality: (1) diagnosis-supporting views
(Fig. 1(a,b,c)), (2) similar patients retrieval and comparison views (Fig. 1(d-g)) and (3) treatment
outcome analysis views (Fig. 1(b,h,i)).

These views support the system’s interaction pipeline as shown in Figure 2. The pipeline includes
three main steps, beginning with a physician making an initial diagnosis using his/her own
knowledge and experiences, based on a focal patient’s current symptoms and lab tests. A series
of potential diagnoses are automatically identified from this stage or manually entered into the
system((Fig. 1(b-1))), and CarePre is able to estimate the patient’s risks in terms of being diagnosed
in the future with the diseases given his/her historical medical records (Fig. 1(b-2)). The doctor can
explore the details of the historical medical records (Fig. 1(b-3)), and issue a query to fetch a set
of similar patients to help contextualize and interpret the prediction results (Fig. 1(d,f,g)). Third,
the doctor can examine alternative treatment plans by examining and comparing the expected
outcomes of each as estimated by the system (Fig. 1(h,i)).

4.2 Usage Scenario
To help understand how a doctor could use CarePre to support diagnosis and prognosis, let us
consider a following usage scenario. Imagine a doctor, John, who is diagnosing a patient and trying
to make a treatment plan. He has several suspected diagnoses in mind, and wants to use CarePre to
confirm his thought and help him make treatment decisions.

After loading the patient’s records into the system, John first takes a look at the prediction view
(Fig. 1(b-1)) to check whether the predicted diagnoses is aligned with his initial judgement. To
make reason of the prediction result, he clicks on each of the predicted diagnoses to investigate the
impact of each historical event on the prediction. To find evidence from a larger population, John
retrieves a group of similar patients from the patient similarity view (Fig. 1(d)) to observe their
clinical pathways. He then switches to the similar patients view to observe the aggregated clinical
paths of the retrieved patients. John clicks and highlights the paths with suspected diagnoses as
outcome to see whether events along the path is in accordance with the influential events in the
history of the focal patient. With the aid of both evidence in the historical records of similar patients
and patterns captured by the prediction model, John is able to confirm the diagnoses of the analyzed
patient, so he continues to make treatment plans.
After reviewing the significance view (Fig. 1(h)), John is able to identify treatments that have

large influence on the risk of the predicted diseases. Combining his own domain knowledge, he
has several optional treatment plans. John tries out different treatment plans by appending the
treatments to the end of the patient’s history and inspect the change of risk in predicted diseases.
He saves the result of different treatment plans in the outcome analysis view (Fig. 1(h)), and after a
comprehensive comparison, he finally decides on a optimal treatment plan.

4.3 Diagnosis Support
CarePre system assists a typical diagnosis procedure by predicting the next medical event given an
event sequence representing a patient’s medical record (R1). More specifically, the system predicts
the next diagnostic event (i.e., the potential diseases a patient may have) based on the patient’s
previous diagnoses and treatments. The prediction results and the patient’s historical medical data
are illustrated in an interactive visualization to facilitate data and result exploration (R2).

4.3.1 Prediction Model. To predict the next diagnosis, we developed a deep learning model to
predict the likelihood of occurrence for a set of potential diseases selected by physicians according
to a patient’s historical medical record. The model extends the design used in Retain [12] to predict
multiple medical events at the same time. Our model was trained using a subset of the MIMIC
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Fig. 3. The structure of Retain: Taken a sequence x1, · · · ,xt as input, the model can predict the distribution
of possible diagnosis in three steps: (a) the embedding step, (b,c) the attention steps, (d) the final prediction
step.

dataset [24], which contains the electronic health records of 46,521 patients. Prior to training, the
data were cleaned by removing rarely-occurred and irrelevant event types.

Fig. 3 illustrates the structure of the model. The model predicts subsequent medical events based
on an input event sequence [x1, ...,xt ], where xi is a multi-hot vector that captures the occurrences
of events at each time point. Given this input, an embedding layer is used to project each of the
input events into a latent feature vector vi (Fig. 3(a)). After that, vi is further concatenated with
di , the duration between the i-th event in the sequence and the prediction time, which is denoted
as v̂i = [vi ,di ]. This combined vector is the input for two recurrent neural networks (RNNs) as
shown in Fig. 3(b,c).

The first network, RNNα (Fig. 3(b)), takes the information of all events at each time points into
consideration to ensure a high accuracy prediction result. The outputs of the model, i.e., (α1, ...,αt )
are weights that indicate the accumulated influence on the prediction results at each time point.
The second network, RNNβ (Fig. 3(c)), estimates the influence of each individual event at each

time point in time on the prediction results. These estimates facilitate the interpretation of the
prediction results. The output, (β1, ..., βt ), are vectors at different time points with each field in
a vector representing the influence of an individual event on the prediction results. A positive /
negative field value corresponds to an event that is associated with an increase / decrease in the
occurrence probability of the predicted event, respectively.
The results from the overall model are calculated using a softmax layer, which predicts the

occurrence probability of each event as follows:

ŷt = so f tmax(Wout ôt + eout )

whereWout and eout are the parameters to be learned in the softmax-layer; ôt is the context vector
at time point t , which we define as a combination of the previous outputs:

ôt =
t∑
i=1

αiβi ⊙ vi

where ⊙ is the element-wise multiplication operator. The original Retain model is designed with the
purpose of producing bi-variance survival predictions. To extend the use case of the original model
and support the real-world application requirements of predicting the risk of multiple diseases, we
adapted the loss function with a specially designed cross entropy loss as following:

L = −
1
N

N∑
k=1

1
T (k )

T (k )∑
t=1

(bwyTt loд(ŷt ) + (1 − yt )
T loд(1 − ŷt ))
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where N is the number of samples, T (k ) is the length of the sequence in each sample, yt is the
ground truth, and ŷt represents the prediction results. bw is a vector that is included within the
loss function to address the presence of highly skewed training data. Each field in bw is calculated
as 1/loд(n) where n indicates the number of occurrences of an event within the training samples.
bw helps overcome skewed distributions within the training samples by reducing the marginal
importance of additional event occurrences for high frequency events. Finally, we estimate the
influence of a historical event s occurring at timestamp t to the prediction results based on αt and
βt as follows:

Influence(s, t) = αtWout (βt ⊙ Wemb [:, s])

whereWemb is the weight matrix of the input layer that transforms the input sequence into feature
vectors, andWout is the weight matrix of the output layer (i.e., the softmax-layer) that transforms
the latent vector into probabilities.

Fig. 4. The visual design of the prediction view includes (a) the medical event sequence leading up to the time
point of prediction, (b) the prediction box showing the most likely diagnoses in order of predicted probabilities,
(c) the treemap summarizing the probabilities of diagnoses and (d) the color of the rectangle indicating the
influence of the event after clicking on a diagnosis event.

4.3.2 Visualization. We represent a patient’s electronic medical record as a sequence of medical
events, which are displayed using rectangular nodes arranged horizontally in order of event
occurrence as shown in Fig. 4(a). To avoid overlaps (during periods of time with multiple medical
events) and large gaps (during periods of time where medical events are infrequent), the event
nodes are spaced with equal distance between them. The actual event times are marked above the
event nodes using text labels.
Successive event nodes are depicted with a duration bar connecting the nodes, and each bar

is labeled with the time span between events. When multiple events occur at the same time (as
is common in medical data), a treemap-based representation is used to compactly represent the
multi-event information within a single rectangular node. All events are color-coded by event type,
with dark gray representing treatments and light gray representing diagnoses. Hovering the mouse
over event nodes highlights the corresponding node into orange and triggers the display of a tooltip
showing additional details of the event. Scrolling and zooming operations are allow for further
exploration of the patient’s medical history.
The prediction results are visualized within a box located to the right of the event sequence

visualization (Fig. 4(b)). The prediction box contains a series of rectangular nodes, one for each of
the most likely predicted diagnosis events for the patient. Each rectangular nodes is color-coded
by diagnosis type, where the set of possible diagnoses are pre-chosen by a physician using the
dropdown list shown in Fig. 1(b-1). This choice is determined by the physician based on their
pre-diagnosis of the patient’s condition.

ACM Trans. Comput. Healthcare, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:10 Zhuochen Jin, Shuyuan Cui, Shunan Guo, David Gotz, Jimeng Sun, and Nan Cao

The order (from left to right) of the event nodes inside the prediction box are determined by
the predicted occurrence probability of the events. Therefore, the left-most event box within the
prediction box corresponds to the diagnosis that is predicted to be most likely for the patient. The
predicted likelihood of each diagnosis event decreases as the boxes move toward the right of the
prediction box. The color saturation for each box indicates the prevalence of the predicted diagnosis
within the medical records for a population of similar patients.

Users can click on a diagnosis event to view more details about the predicted diagnosis. Available
information includes a general description of the diagnosis, symptoms, causes, diagnosis methods,
treatments, and typical prognosis. These details are displayed within the description view for
physicians to review. The color of rectangular nodes will change into blue or red to indicate the
influences of the historical events after clicking on a diagnosis event. Red color indicates that the
event can lead to the disease while blue color implies that the event can low the risk of the disease.
The color saturation presents the degree of influence.

Fig. 5. Medical event sequences for similar patients are visualized as either (a) individual sequences or (b) an
aggregated flow diagram. Part (c) shows a more detailed illustration of the aggregate view.

4.4 Similar Patient Retrieval and Comparison
As identified in the pilot study, a key requirement for clinicians is the ability to compare the focal
patient and prediction results to other patients with similar medical records (R3). CarePre allows
users to retrieve similar patients in two ways: (1) via brushing a patient similarity histogram
(Fig. 1(d)), and (2) via explicit queries using key medical events (Fig. 1(e)). Similar patients retrieved
via either interface are displayed in a patient list (Fig. 1(f)) which depicts a detailed event sequence
for each similar patient (Fig. 1(g)) to allow detailed comparisons.

4.4.1 Patient Similarity and Sequence Alignment. To support the above functions, CarePre adopts a
distance measure to quantify the similarity between events sequences that is robust to differences
in sequence length and event timings. To this end, CarePre uses the event-to-vector and sequence
alignment techniques introduced in ET2 [21]. Specifically, a vector representation of each event in
a set of sequences is first calculated based on a neural network model. Sequences are then aligned
temporally using a dynamic time working algorithm (DTW) [34], and distances are calculated
using the event vectors. The algorithm measures similarity between sequences by estimating the

ACM Trans. Comput. Healthcare, Vol. 1, No. 1, Article 1. Publication date: January 2019.



CarePre: An Intelligent Clinical Decision Assistance System 1:11

similarity between each pair of events respectively in these sequences based on the Euclidean
distance of the corresponding event vectors.

4.4.2 Visualization. The patient similarity view displays event sequence data for both the focal
patient and the patients most similar to him/her. By default, the system retrieves a group of
sequences with normalized distance to the focal sequence under 0.1 for analysis, but also allow
users to determine similar patients for comparison via brushing on the similarity histogram or
querying by key medical events. The event sequences for similar patients are aligned to the focal
patient and visualized in parallel as shown in Fig. 5(a). We divide each of the similar sequences
into two parts: (1) a history section, which best matches with the focal patient’s historical medical
records up to the current point in time (Fig. 5(a-1)), and (2) an outcome section which depicts the
outcomes observed for the similar patients in comparison to the predicted outcome results for the
focal patient (Fig. 5(a-2)). This view adopts a visual design that is similar to the prediction view.
To support more effective one-to-many comparison between the focal patient and the set of

selected similar patients, we aggregate the medical event sequences for the similar patients into a
flow-based visualization that illustrates the overall evolution of diseases and treatments within the
group over time. In each time stage, we group patients together if they experience identical events.
Each medical event is visualized using a compound rectangular, with the height proportional to
the population of patients with the corresponding event at the corresponding time stage. Patients
have multiple events co-occur within the time stage are split by the number of co-current event
(as shown in Fig. 5) to make sure the total number of population are remain consistent in all time
stages. The number of patients(after weighted by event-co-occurrence) that flow through each
event is displayed as text in the leading rectangle (Fig. 5(b-1)). The middle rectangle of each node
(Fig. 5(b-2)) displays the event name. Finally, several connection glyphs on the right edge of the
node (Fig. 5(b-3)) depict connections (via the linking lines) to subsequent nodes which occur in the
next time stage (Fig. 5(b-4)). The height of each connection glyph indicates the number of patients
whose medical record includes the corresponding event transition. The width of the connection
glyphs corresponds to the average duration of the transition.

4.5 Treatment Outcome Analysis
The CarePre system provides a set of interactive analysis capabilities to identify key factors that
effect the prediction results (R4), and make more informed treatment decisions by simulating
possible treatment plans (R5). This is accomplished through interactions that edit the focal patient’s
event sequence within the prediction view (Fig. 1(b)) and visual comparison of the edited sequences
in the outcome analysis view (Fig. 1(h)).

The outcome analysis capability is summarized in Fig. 6. Users can edit the focal patient’s original
event sequence using four interactive operations: (1) adding a new event, (2) removing an existing
event, (3) adjusting the order of events, and (4) changing the duration between events. Updated
prediction results are calculated in real time in response to any edit operation is performed, and
users have the option to save an edited event sequence (and the resulting prediction) as a new
entry within the outcome analysis view. This allows clinicians to compare edited event sequences
to explore how changes in a patient’s medical record (i.e., a new treatment, or the absence of a
co-morbidity) impacts the prediction results. To support this activity, the view highlights each of the
user’s event sequence edits in orange (Fig. 6), and uses coordinated highlighting to link predictions
of the same medical event across edited sequences (e.g., the same predicted diagnosis appearing for
two different edited versions of the focal patient’s medical record). Users can also zoom in/out on
the prediction box to retrieve more detailed views. These interactions help communicate changes
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Fig. 6. We enable four interactions for outcome analysis: Removing, Moving, Duration Adjustment, and
Adding. The adjusted event sequences are highlighted on the left side with annotations as shown in the
figure. The corresponding predicted outcomes are shown on the right side of the view.

in risk between sequences, especially when the same events (but with different probability) are
predicted for the alternative edited sequences.

A common use case for these features is when a physician investigates the potential outcomes of
different treatments. The physician can create multiple edited sequences by adding the potential
treatment events to the end of the focal patient’s original medical record. Viewing the predicted
results under the assumption of alternative treatments can help the clinician understand the
impact of each treatment option. Alternatively, a physician could create alternative versions of a
patient’s medical record by removing individual events. This would facilitate model interpretation
by allowing a clinician to see the impact of a given feature on the prediction result.

Finally, to support further analysis on the contribution of key events to the predicted outcomes,
CarePre computes the degree to which of each potential treatment is associated with each of the
prediction targets within the similar patient population. These associations are displayed in the
significance view (Fig. 1(i)) as a matrix where each row is a treatment group and each column is
a predicted disease. The rows are clustered to group related treatments using the event-vector
technique presented earlier in this section.

Each cell in the matrix includes a diagram that shows the change of a disease’s mean occurrence
probability (shown in y-axis) and 95% confidence interval within the subset of similar patients
with the treatment (left plot) vs. those without the treatment (right plot). Cells with statistically
significant differences are highlighted with a white background.

5 EVALUATION
This section presents the results from three forms of evaluation: quantitative experiments to
measure the performance of the prediction model, two case studies with a cardiologist and a
pulmonologist, respectively, and interviews with seven physicians in both USA and China.

5.1 Evaluation of the Prediction Model
To verify that the expansion of prediction scope in our model (with the extension of multi-event
prediction) has no negative effect on the precision of prediction, we compared the performance of
our model (with extensions for multi-event prediction) to the original Retain single-event prediction
model [12] from which our model was derived.
More specifically, medical records for patients with cardiovascular disease and at least one

hospitalization were chosen from the MIMIC dataset, and their medical records were transformed
into one or more event sequences based on a 6-month time window. Each sequence ended at a
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Retain Retain Extended
Neg Log Likelihood 0.2834 ± 0.0036 0.2768 ± 0.0036

AUC 0.8294 ± 0.0022 0.8307 ± 0.0026
Precision 0.8126 ± 0.0053 0.8126 ± 0.0054
Recall@2 0.6859 ± 0.0081 0.6943 ± 0.0082
Recall@4 0.8954 ± 0.0027 0.8973 ± 0.0032
Table 1. Comparison of prediction performance

Fig. 7. A case study based on a subset of MIMIC data with cardiovascular disease. The results shown in this
figure were identified by our expert user.

hospital admission event and started six months prior. As a result, 7,537 patients were selected and
64,269 sequence samples were generated. These samples were divided into the training and testing
sets using a 7:3 ratio. We further cleaned the sequences by preserving only diagnosis and treatment
events. Both the original and extended Retain models were trained using the training samples
to predict the risk of five highly prevalent heart and cardiovascular diseases. The disease risks
were simultaneously predicted using a single extended Retain model. Meanwhile, five independent
models (one for each disease) were trained for the original Retain model design. As shown in Table 1,
the negative log likelihood of the extended model is lower than that of the original model. The
accuracy of both the extended model and the original model are around 0.83, while the accuracy
of the extended model is higher. The precision of two models are around 0.81 and the extended
model outperformed the original Retain as regard to both the top-2 and top-4 recall. Overall, the
performance evaluation result shows that our extended model performed similarly to (slightly
better than) the original, while our extended model is able to support prediction for multiple events
and has a wider application.

5.2 Case Study I: Cardiovascular Disease
We conducted a case study with a senior inpatient cardiovascular doctor with over 20 years’ clinical
experience in China. During the study, we first introduced CarePre system and the doctor was
invited to use the system for himself. After getting familiar with the system’s functions, the doctor
were asked to perform a series of tasks including interpreting prediction results, making a treatment
decision, and estimating the future outcomes for different treatment plans. The study lasted for
about two hours, and the doctor was encouraged to ask questions or make comments at any time.
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Fig. 8. A case study based on a subset of MIMIC data with respiratory diseases. The results shown in this
figure were identified by our expert user.

Fig. 7 shows the results of our study. After reviewing the patient’s historical medical records
(Fig. 7(a)), the doctor said “this patient is being treated with some typical medicines such as
metoprolol and furosemide.” He also noted that the patient suffered from diabetes after noticing
regular insulin injections within their medical records. According to the prediction results, the
patient had a high risk of heart failure in the future. The doctor mentioned “it is possible as the
diabetes may lead to coronary disease and finally develop into heart failure.” The doctor then turned
to the similar patient view (the aggregated form), which displayed the disease progression of 10
most similar patients automatically retrieved by the system. He was impressed by the capability
of this view in summarizing complex sequence progressions. After a brief inspection, the doctor
selected the group of 6 patients with heart failure for further inspection, and the corresponding
disease progression paths were automatically highlighted by the system. He believed this view
was “very informative,” and that the click-to-highlight function was able to “clearly show the
progression of an outcome in context of treatments.” He felt this view gave him more confidence
in the prediction results as “it provides specific evidence [to support the prediction results].” He
also mentioned that this view would be particularly useful for medical researchers as “it illustrates
many examples following different treatment plans” (see annotations in Fig. 7(b)).
The doctor was also interested in the system’s outcome analysis function. Specifically, he first

made a care plan for the focal patient by adding multiple treatments (e.g., fentanyl, furosemide,
insulin, and metoprolol) to the end of the patients existing medical record as shown in Fig 7(d).
In response, the risk of heart failure and hypertensive disease both decreased. Next, the doctor
removed all of the events for furosemide (a common medicine used for heart failure patients to
treat fluid build-up) from the sequence, resulting in a significant increase in the risk of heart failure.
This also revealed in the view seen in Fig. 7(c), showing, for example, that injections of insulin had
a significant effect on reducing the risk of heart failure. Finally, the doctor moved all insulin to
the end of the sequence to mimic a scenario in which the patient delayed diabetes treatment. This
resulted in a further increase in heart failure risk. The correctness of the various predictions were
verified by the doctor.
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5.3 Case Study II: Respiratory Diseases
We conducted a another case study with a pulmonologist who has over 8 years’ clinical experience
in China. We first introduced CarePre system and encouraged the doctor to use the system. The
tasks include diagnosis prediction, similar patient comparison and outcome analysis. The study
lasted for about an hour and a half.
Fig. 8 shows the results of our study. After reviewing the patient’s historical medical records

(Fig. 8(a)), the doctor said “This patient is being diagnosed with pneumonia and treated with
heparin sodium and furosemide.” He noted that this patient suffered from both pulmonary diseases
and coronary diseases. “This patient must be an elder people. Pulmonary diseases can easily lead
to pulmonary heart diseases for the elderly. On the other hand, heart disease can also result in
pulmonary diseases such as pulmonary edema. Furosemide is typically used to treat pulmonary
edema.” As shown in the prediction results, the patient has a low risk of pulmonary diseases in the
further which indicates the applied treatment plan was effective for the focal patient. The doctor
mentioned “It seems that the treatment plan was effective. I am also wondering which medicine
played the most important role in the plan.” He further clicked on the green rectangle (obstructive
chronic bronchitis) which is the most common complication of pulmonary heart disease to analyze
the effects of the historical events as shown in Fig. 8(a). According to the results, the event heparin
sodium was a key factor that reduces the probability of obstructive chronic bronchitis. The doctor
said “As far as I know, heparin sodium doesn’t have a direct effect on the obstructive chronic
bronchitis. I need more information to confirm these results.”

The doctor then explored the similar patient view (Fig. 8(b)), which shows the disease progression
of similar patients. The doctor further filtered a group of patients who had the same events in the
first stage as the focal patients. The corresponding disease progression paths of the focal patients
were then highlighted by the system. The doctor found that eight patients were treated with heparin
sodium. Among these eight patients, one of them had asthma, two of them had pneumonia while
the rest of them did not have any pulmonary diseases in the outcome. On the other hand, the
patients who did not take heparin sodium had obstructive chronic bronchitis. The doctor said “The
progression of the similar patients confirmed that heparin sodium can lower the risk of obstructive
chronic bronchitis. The result actually reminded me of a new research work in medical science. This
research work evaluated the therapeutic use of heparin in patients with COPD (chronic obstructive
pulmonary disease)[44].” He commented that the progression of the similar patients provided
more information to confirm the prediction results via the summarization of the raw data. He also
mentioned, “it can inspire me to make better decisions. We can also learn from the progression of
similar patients.”

The doctor also performed the outcome analysis task using the system. Specifically, he removed
all of the events for heparin sodium from the sequence, resulting in a significantly increased risk
of pulmonary diseases (Fig. 8(c)). This result again confirmed the importance of heparin sodium
for the patients who suffered from pulmonary heart diseases. The doctor said “This function is
really novel and useful. Knowing the effect of the treatment in advance can be very helpful in
clinical scenarios. Providing the outcome analysis result can also make the patients more confident
in making treatment plans.”

5.4 Domain Expert Interview
In addition to the case studies, we conducted in-depth interviews with three senior physicians
(E1−3) separately and a group discussion with four pulmonologists (E4−7). To ensure diversity,
interviewees involved were with different backgrounds. In particular, E1,2 were two Chinese
cardiologists, both with over 15 years of clinical experience; E3 was a senior physician in USA; and
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E4−7 were four Chinese pulmonologists, with 6-8 years of clinical experience. To avoid bias, none
of these doctors participated in our pilot study. Each interview session started with a half-hour
interactive demonstration of our system. The doctors were then invited to use the system on their
own. We provided the doctors with the corresponding case study tasks in their area of expertise
as a reference, but they were encouraged to freely experiment with the system. After the experts
finished exploring the system’s functionality, we conducted a semi-structured interview guided
by several questions, including the overall usefulness, ease of use, general pros and cons of the
prototype system, visualization designs and insights obtained from using the system. Each of the
four interview sessions lasted for approximately 1.5 hours, and the interview process was recorded.
We summarize the collected feedback into the following four themes, including feedback on three
key functionalities of CarePre , followed by the user-friendliness of our visualization and interaction
design.

5.4.1 Diagnosis Support. All experts appreciated the design of CarePre in supporting diagnosis
and believed capability of our system in estimating the risk of potential diseases is useful. E1 said
“I need to take care of over 50 patients a day, ..., sometimes I am just too tired to avoid making
mistakes, ..., if the system is developed based on statistical analysis of similar medical records, I’d
love to trust the results, ..., and it can actually help us reduce the risk of making a mistake.” E2
mentioned a potential use of CarePre in helping inexperienced doctors or medical students to make
more accurate diagnoses. E2 also mentioned that “this tool can [help] reduce a doctor’s burden.”
Similarly, E3 mentioned that “doctors’ time is valuable, quickly estimating the risk of a patient
[using the system] is a useful function.” The pulmonologists (E4−7) also agreed that the system can
help doctors make diagnoses more efficiently, and they felt the system “can be applied to assist
consultation.” Moreover, they also found revealing the impact of historical event on the prediction
result useful. For example, as E4 commented: “We sometimes hesitate to trust the machine learning
models because they usually fail in providing reasons. It can help raise our confidence if the system
can illustrate how the model arrive at the result.”

5.4.2 Similar Patient Retrieval and Comparison. According to the experts’ feedback, comparing
the focal patient with similar patients “accords with the idea of evidence-based medicine”. As E5
explained: “This is similar to what we usually do in Propensity Score Matching (PSM), but is much
more advanced.” E6 agreed and added: “We used PSM to study the effect of clinical decisions based
on statistical analysis. However, it is generally hard to find proper study group [due to the high
complexity of observational data] ..., it is very powerful that your tool can automatically identify
patients with similar progression and make comparison with rich contextual information.” The
usefulness of our similar patient comparison mechanisms was also recognized by two cardiologists,
as E1 said: “comparing to the similar patients in detail not only gives me more confidence of the
prediction results but also provides me with rich treatment examples.” E2 also commented: “medical
records of similar patients are an important reference for a doctor to make a proper diagnosis, but
sometimes the doctor cannot fully review a patient’s entire medical records [due to limited time or
unavailable of the data]..., the system provides a more efficient way for us to retrieve the similar
patients [when compared to the system we are currently using]. E3 felt that “the most valuable part
of the system would be the impact different treatment approaches would have on similar patients.””

5.4.3 Treatment Outcome Analysis. The treatment outcome analysis was considered a highlight
of the system and was the most discussed during all interviews. E1 felt that the idea of virtually
making different care plans and comparing their potential outcomes was a “cool and valuable”
feature to support making a prognosis. E2 felt the same way and stated that “this system provided
an interactive way for exploring some complicated situations and their influence on the patient.”
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Fig. 9. The questionnaire results

This was also mentioned by E7, as he commented: “we used to study the effect of a single treatment
with RCT (randomized clinical trail), while this tool can simulate the effect of a combination of
treatment, which is awesome.” E3 felt that knowing the impact of treatment on the risk of diseases
is convenient for doctors to further investigate key factors that influences the outcome. E4 was
especially excited about this feature, and mentioned that “this can be used to help junior doctors
try out the dose of insulin in treating diabetics.” E5 agreed and added: “This system can help junior
doctors learn from the experience of senior doctors in a more interactive way instead of plain text
on the textbook.”

5.4.4 User Friendliness. All interviewees felt the system was more complex than any tools they
had used in their daily work. Comments such as “looks overwhelming”, “seems difficult to learn”
was frequently mentioned at the beginning of each interview session. However, after they got
familiar with the system’s functionalities and explored the system by themselves for a while, they
felt the design was “intuitive” and the usage of system “gradually becomes clear”. For example,
when the similar patient view was first introduced, the senior physicians felt it was “complex and
took time to learn,” especially the aggregated representation. However, once they got familiar with
the design, they felt this view was “informative” and “clearly illustrated different care plans and the
corresponding outcomes.” E6 also stated that: “I was confused by so many views and had no idea
where to look at, but then I realized that each view is especially designed for a specific task, and
that [what analytical task to perform] is all I need to care about.” E7 agreed and added: “especially
that the [exploration] pipeline for each task is relatively fixed.” E5 felt the interaction “helped a lot
in reducing the complexity”, as he explained while tweaking the treatment plan: “tools we used
typically employ a lot of context-menu [to interact with users], which is difficult to memorize,
while this tool allows me to manipulate the visualization more directly.”

5.5 Post-InterviewQuestionnaire
All experts (7 interviewees and 2 case study participants) were invited to complete a questionnaire
after their interviews.

The questionnaire asked experts to rate the ease-of-use and usefulness of the key features of our
system on a scale of 1-5, with 1 indicating difficult to use / useless and 5 indicating very easy to use
/ very useful. The results are summarized in Fig. 9. The primary issue highlighted in these results
was related to ease-of-use, which will be discussed in the next section.

6 DISCUSSION
The results from our case study and expert interviews were generally positive, with users confirming
the usefulness of CarePre and expressing excitement regarding the treatment outcome analysis
capabilities. However, they also identified several limitations, provided a number of constructive
suggestions, and mentioned some interesting potential applications of the system.
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6.1 Limitations and Solutions
The major limitations of CarePre system include ease-of-use, data quality, and a lack input methods.

6.1.1 Ease-Of-Use. Although all of the experts acknowledged the usefulness of the system, they
also mentioned that learning how to use it took essential time away from a doctor. All of the experts
were familiar with traditional statistical diagrams such as histograms and line charts, however they
needed some practice to read some of the more complex views introduced in CarePre . However,
they also believed these new designs were more informative when compared to more familiar
statistical charts. The experts also felt that the difficulty mainly comes from the lack training. For
example, E2 said “we (doctors) spend years in school to learn how to make diagnosis based on those
[traditional] statistical tools and diagrams, ..., your tool is obviously more informative but we just
need more time to get familiar with it.” Second, operating multiple coordinated views also take
some effort. Both E1,3 mentioned that it would easier to use if the tool could directly generate and
print out a report without as many interactions. E3 also said “it will be easier to use if you could
somehow separate the views of three different functions apart into multiple pages and guide the
operation in a step to step manner instead of packing them all together.” The four young doctors
E4−7 agreed that they can use the system easily after training. E4 said “It will take some time for
us to learn how to use the system. However, the design is not difficult to understand. After the
training, I am willing to use the system. I also hope to get some new findings using this system.”

6.1.2 Data Quality. The Chinese physicians were concerned about the quality of the training data
which directly influenced our analysis results. Both E1,2 mentioned that the quality of the electronic
health records collected in Chinese hospitals were much worse than that of the MIMIC dataset.
They mentioned that the medical data in China was primarily free-text, and that many hospitals in
China were just started to use electronic health record systems. That limits the longitudinal extent
of data that could be used as input to the system. For this reason, they believed that CarePre might
not be as useful in Chinese hospitals right away. E2 reminded us that a prognosis estimate is usually
based on the statistics of a very large collection of patients over a very long period of time. She
pointed out that this feature, therefore, was useful only when the underlying data was rich enough
to represent the rich variety of outcomes that patients face. E3 also mentioned that the treatment
outcome analysis should be based on a larger dataset collected within a longer time window (e.g.,
several years). E4 added that the knowledge in the field of medicine updated very fast. As a result,
the data used in the system need to be updated as well. To solve this problem, we need to have
deeper cooperation the doctors in the data processing step. With the help of doctors, we can uncover
the most meaningful information in the dataset and update our system with more data from real
clinical scenario.

6.1.3 Lack of input methods. E1 also felt that although CarePre was useful, the design was not
sufficient as it has limited ways for clinicians to enter new medical data. In particular, she said,
“when compared to the existing system, your tool focuses more on the analysis, but lacks a con-
venient method for me to enter medical records in the text form”. E5 mentioned that providing
the information of historical medical records is not enough. He said, “Although historical medical
records are important, doctors also want to input the vital signs of the patients into the system.” In
the future, another view with interactions should be designed in our system to help doctors input
the information they are interested in for analysis efficiently. In this way, our system will be more
comprehensive and useful.

6.1.4 Insufficient Context Information. All the experts felt the information shown in the description
view was helpful, but they would like to have more. They suggested us to collect more information
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such as the latest diagnosis guidelines and information about new medicines. In the future, we
will upload the up-to-date medical information and latest guidelines into the system to make the
description view more valuable.

6.2 Implications
Our experts raised many implications of the CarePre system as well, which can be summarized
into two broad categories.

6.2.1 FromKnowledge-Sharing to Experience-Sharing. All of the experts believed that CarePrewould
be especially useful for junior physicians, medical students or other inexperienced health profes-
sionals. They believed that since the prediction model in CarePre is trained based on the treatment
records made by experienced physicians, it would capture those doctors’ experiences. In com-
parison, most existing knowledge-based systems only share medical knowledge. In particular,
E1,2 mentioned that in China there are many undeveloped rural areas with poor health systems
where doctors are less experienced and less well-trained. The CarePre system would help provide
information to these doctors based on the experience of more senior clinicians. This maps to typical
doctor training techniques, where doctors first learn from medical textbooks before a long period of
training under the supervision of senior doctors to help them gain knowledge through experience.

6.2.2 From Doctors to Other Users. Our experts also suggested many other potential application
scenarios for the CarePre system. For example, E1 believed that our system would be very useful
for analysts in a medical insurance company. “It can help an insurance company estimate the risk
of a patient in a more efficient way" said by E1. Both E1 and E2 mentioned that our tool could be
very helpful for medical research as it is “build based on statistical analysis and provides many
advanced visual diagrams, illustrating the evidence of the analysis results". Both E2 and E3 felt that
CarePre system could also be directly used by a patient as “it suggests the risk a patient may have"
and “the patient may want to spend more time investigating the functionality of the system". These
scenarios greatly expand the application scope of CarePre system, though certain design changes
may be required for different applications.

7 CONCLUSION
This paper introduced an intelligent clinical decision assistance system, CarePre , that uses large-
scale EHR data to help physicians make decisions during their clinical workflow. The system,
designed based on requirements identified in a pilot study, provides clinical assistance through
a state-of-the-art deep learning prediction model as well as an interactive visual interface for
exploration and interpretation. The interaction pipeline of our system, consists of three major steps:
(1) diagnosis support, (2) similar patients retrieval and comparison, and (3) treatment outcome
analysis. We evaluated the system via case studies, expert interviews, and a quantitative evalua-
tion of the predictive model. The results from these evaluations showed that the overall system
provided valuable assistance to the clinical decision process. In the future, we plan to address the
aforementioned issues and conduct a larger evaluation of the system in a local hospital so as to
update the system’s models based on local patients’ conditions.
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