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Facial Sketch Avtodraw

( ‘ﬁ Style: Cartoon v  Gender: Female ~

Optimize your drawings here!



Reference Pipeline for Al-Supported Sketching
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Stroke Encoding

Learning

Generating

continuous one-hot
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Start coordinates  continuous end of end of
relative to the end drawing from drawing drawing
of last stroke the last point, a stroke a sketch

——"Ha D, Eck D. A neural representation of sketch drawings[J]. arXiv preprint arXiv:1704.03477,2017."



| Learning (Sketch-RNN)

Stroke Encoding

Learning

Generating

Encoder: Bidirectional RNN (BRNN)

—"Ha D, Eck D. A neural representation of sketch drawings[J]. arXiv preprint arXiv:1704.03477,2017." 10



| Learning (Sketch-RNN)

Stroke Encoding

Learning Random Sampling for Stroke Generation

Generating

Encoder: Bidirectional RNN (BRNN)

—"Ha D, Eck D. A neural representation of sketch drawings[J]. arXiv preprint arXiv:1704.03477,2017." 11



| Learning (Sketch-RNN)

Decoder: Autoregressive RNN

Stroke Encoding

Learning Random Sampling for Stroke Generation

Generating

Encoder: Bidirectional RNN (BRNN)

—"Ha D, Eck D. A neural representation of sketch drawings[J]. arXiv preprint arXiv:1704.03477,2017." 12



. Generating (Sketch-RNN)

Stroke Encoding

Learning

clear drawing cat random  auto-encode

—"Ha D, Eck D. A neural representation of sketch drawings[J]. arXiv preprint arXiv:1704.03477,2017." 13



LIMITATIONS OF SKETCH-RNN

Low quality

1. generating sketches in one category (bird). 2. dealing with multi-class situations
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. AI-SKETCHER
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. AI-SKETCHER

e A conditional vector is used to ensure a high
quality generation of sketches from multiple
categories.
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. AI-SKETCHER

* A conditional vector is used to ensure a high
quality generation of sketches from multiple
categories.

e An influence layeris introduced to estimate
how the previous strokes will influence on the
next stroke.
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. AI-SKETCHER

* A conditional vector is used to ensure a high
quality generation of sketches from multiple
categories.

e An influence layerisintroduced to estimate
how the previous strokes will influence on the
next stroke.

e A CNN-based autoencoderis employedto
capture the spatial information of a training set.

Hitittettiit-
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AI-SKETCHER
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* A conditional vector is used to ensure a high
quality generation of sketches from multiple
categories.

e An influence layerisintroduced to estimate
how the previous strokes will influence on the
next stroke.

e A CNN-based autoencoderis employed to

capture the spatial information of a training set.
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AI-SKETCHER
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* A conditional vector is used to ensure a high
quality generation of sketches from multiple
categories.

e An influence layerisintroduced to estimate
how the previous strokes will influence on the
next stroke.

e A CNN-based autoencoderis employed to

capture the spatial information of a training set.

¢ Loss function is modified.
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. AI-SKETCHER

Hitittettiit-

e A conditional vector is used to ensure a high
quality generation of sketches from multiple
categories.

e An influence layerisintroduced to estimate
how the previous strokes will influence on the
next stroke.

e A CNN-based autoencoderis employed to
capture the spatial information of a training set.

¢ Loss function is modified.
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. Al-SKETCHER - conditional Sequence-to-Sequence VAE
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e A conditional vector is used to ensure a high
quality generation of sketches from multiple
categories.
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. Al-SKETCHER - conditional Sequence-to-Sequence VAE
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e A conditional vector is used to ensure a high
quality generation of sketches from multiple
categories.

Encoder: Bidirectional RNN
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. Al-SKETCHER - conditional Sequence-to-Sequence VAE
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e A conditional vector is used to ensure a high
quality generation of sketches from multiple
categories.

X5s: the sequences of strokes.

he"¢ = encode(Xy)

h,]
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. Al-SKETCHER - conditional Sequence-to-Sequence VAE

z I I I I 'I I .I " .I I .I ‘I I | ‘I .AX\

e A conditional vector is used to ensure a high
quality generation of sketches from multiple
categories.

hc — [henc;c]

 is a k-dimensional one-hot
conditional vector with k indicates
the number of conditions.
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. Al-SKETCHER - conditional Sequence-to-Sequence VAE
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e A conditional vector is used to ensure a high
quality generation of sketches from multiple
categories.

hc is further transformed into two
vectors to capture the distributions of
the training strokes:

ps =W,h.+b,

Woh. + b,
;)

Os = 633]?(

27



. Al-SKETCHER - conditional Sequence-to-Sequence VAE
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e A conditional vector is used to ensure a high
quality generation of sketches from multiple
categories.

A latent vector has been randomly
sampled from the distributions for
generating the next strokes:

Zs = s+ 05 A
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Al-SKETCHER - Conditional Sequence-to-Sequence VAE

Siti
I
GMM
softmax
Iy
§,—  LSIMdecoder For decoding
a % Is is concatenated together with the image
s
| la, wl lo feature vector Zr, the latent influence vector
S S zr
FC Aad, the conditional vector € and the last
h, .
i é . € stroke vector Si:
| forward backward | ‘z = [‘zs; zr; ad; c; Si]
| LSTM LSTM |
| encoder encoder |
X X

h?¢ = decode(z)
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. Al-SKETCHER - conditional Sequence-to-Sequence VAE

e A conditional vector is used to ensure a high
quality generation of sketches from multiple
categories.

predict the »obabilitics of the relative
position of the next drawing point:

P(Az; 11, Ayit1)

‘I/ I 'I I I .I I '| | .I | .I | I I .I .X\
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* A conditional vector is used to ensure a high
quality generation of sketches from multiple
categories.

e An influence layerisintroduced to estimate
how the previous strokes will influence on the
next stroke.

e A CNN-based autoencoderis employed to

capture the spatial information of a training set.

¢ Loss function is modified.
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AI-SKETCHER

* A conditional vector is used to ensure a high
quality generation of sketches from multiple
categories.

a,
Ha| | Og
FC
e A CNN-based autoencoderis employed to
capture the spatial information of a training set.
Uy By ees ] * Loss function is modified.



. AI-SKETCHER - Influence Layer
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e An influence layeris introduced to estimate
how the previous strokes will influence on the
next stroke.
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AI-SKETCHER

- Influence Layer

It considers all the previous hidden node
values until the latest drawing step in the RNN
encoder.



Al-SKETCHER - Influence Layer

[y, B,y ooy B ]

0°

The influence vector @d is a latent vector
whose fields are sampled from these normal
distributions:

ad:ﬂ'a_'_o'a'Aa
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AI-SKETCHER
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* A conditional vector is used to ensure a high
quality generation of sketches from multiple
categories.

e An influence layerisintroduced to estimate
how the previous strokes will influence on the
next stroke.

e A CNN-based autoencoderis employed to

capture the spatial information of a training set.

¢ Loss function is modified.
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AI-SKETCHER
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* A conditional vector is used to ensure a high
quality generation of sketches from multiple
categories.

e An influence layerisintroduced to estimate
how the previous strokes will influence on the
next stroke.

¢ Loss function is modified.
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© AI-SKETCHER - cNN-based Autoencoder
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e A CNN-based autoencoderis employedto
capture the spatial information of a training set.
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© AI-SKETCHER - cNN-based Autoencoder
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e A CNN-based autoencoderis employedto

capture the spatial information of a training set.

Xr: the Input raster image matrix.
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© AI-SKETCHER - cNN-based Autoencoder
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e A CNN-based autoencoderis employedto
capture the spatial information of a training set.
Encoder:

e three convolutional layers with the stride size
as 2.

* the other three layers with the stride size as 1.
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© AI-SKETCHER - cNN-based Autoencoder
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e A CNN-based autoencoderis employedto
capture the spatial information of a training set.

Encoder:

® The lastlayeris a fully-connected neural
network to produce the latent feature vector

Zr with 128 dimensions.
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© AI-SKETCHER - cNN-based Autoencoder

X
? e A CNN-based autoencoderis employedto
o o decomvs capture the spatial information of a training set.
A s
S . LSTM decoder
. 2 Decoder:
Hal | % ul o . e three deconvolutional layers with
- FC ! stride sizes equal to 2.
he | . I e the other three layers with stride sizes
h_——D——h. equal to 1.
forward backward
ko h LSTM LSTM
ey encoder encoder
X X X, X,
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AI-SKETCHER - cNN-based Autoencoder
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RelLU is used as the activation function in both
convolutional and deconvolutional layers.

tanh is used as the activationfunction of the
fully-connected neural network.
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AI-SKETCHER
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» A conditional vector is used to ensure a high
quality generation of sketches from multiple
categories.

e An influence layerisintroduced to estimate
how the previous strokes will influence on the
next stroke.

e A CNN-based autoencoderis employed to

capture the spatial information of a training set.

¢ Loss function is modified.
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AI-SKETCHER
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* A conditional vector is used to ensure a high
quality generation of sketches from multiple
categories.

e An influence layerisintroduced to estimate
how the previous strokes will influence on the
next stroke.

e A CNN-based autoencoderis employed to

capture the spatial information of a training set.
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© AI-SKETCHER - Loss function

¢ Loss function is modified.
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© AI-SKETCHER - Loss function

¢ Loss function is modified.

Loss =1, + o - max(lx, €)
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3 AI-SKETCHER - Loss function

e Loss function is modified.

Loss = 1, + a - max Iy €)

/

the reconstruction loss

\

estimates the distribution differences

estimates the differences between  between the generated strokes and

the generated strokes and the
training samples.

the strokes in the training set modeled
by the standard normal distribution.
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AI-SKETCHER - Loss function

Loss = 1, + a - max lg; €)

1 <
L =g S caplo) - )
la =— ! i(l—ka —exp(oy.) — p2)
a 27’La a; a; a;
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EVALUATION

We performed three experiments in purpose of validatingthe Al-Sketcher's

e capability of generating sketches from

® generation



EVALUAT'ON - Dataset

The QuickDraw dataset contains over 50 million sketches in 75 object categories and originally
used for training Sketch-RNN.

Quick, Drow! The pota () Get the data ¥ Play the game <

=XV AR T EEGLNG B H
AW I e
HLLEOBTRN Y DO =R
P HTORE LR HFRNOBP LS &
== U WFE L ALY OO

https://quickdraw.withgoogle.com/
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EVALUATION - Dataset

The FaceX dataset consists of 5 million sketches of both male's and female's facial expressions
showing seven different types of emotions.

FAceX

Abstract Style Cartoon Style Realistic Style

Two genders Three artistic styles

A Dataset Containing 5,240,088 Hand-
Drawing Sketches

The dataset contains over 5 million labeled facial sketches
categorized by genders (male, female), viewing angles
(frontal, mid-profile left view), emotions (neutral, happy, sad,
angry, fearful, surprised, disgusted), and artistic styles
(realistic, cartoon, abstract styles).

DOWNLOAD CONTRIBUTE

Y SVG format: 72 LY NPZ format: 63

Suprised Disgusted Mid-Profile Left View Frontal View

https://facex.idvxlab.com/
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EVALUATION - 15 Experiment

ol
ol

q. Y
&)
e

S)
Cay
a\

9)
QY
g

00|29 | 4 1

1)
R)
(X

N[ B\ B\ °&

)‘@/ ),@/) ‘ﬁ/ }‘QJ

g/

~_~
@ &
s —~ S=|os A g =N A
BB (F5|02(2,°2 |3,~|00 35
o g A
~ /4~ a Al N ia sl ~
2% 3083 0% 0 QD 56,e
N /R AlAs ~ N e
SNERDEAICE AR
~ ~alAa AL oS
S AEEICEREKIE
-y Q ® ~— Q =
angry disgusted fearful happy sad surprised neutral

Experiments based on FaceX Dataset

angry disgusted fearful

sad

Conditional
Sketch-RNN

Al-Sketcher
(Influence Layer Only)

@9
| 9

Al-Sketcher
(Autoencoder Only)

na’
(g) )

ol
N

Al-Sketcher

surprised neutral



EVALUATION - 15 Experiment
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EVALUATION - 15 Experiment
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EVALUATION - 15 Experiment
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EVALUATION - 15 Experiment
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. EVALUATION - 15t Experiment

A within-subject user study
e 20 participants (10 females)

® The repeated measures one way ANOVA
analysis showed that the generation quality
of Al-Sketcher had an average rating of 3.9
and was significantly better than that of the
baseline models (with all p<.01).

guestionnaire rating

(6)]

N

w

N

Conditional Al-Sketcher Al-Sketcher Al-Sketcher
Sketch-RNN  (Influence Layer (Autoencoder
Only) Only)
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EVALUATION - 2nd Experiment
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© EVALUATION - 2nd Experiment
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© EVALUATION - 2nd Experiment
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AlI-Sketcher
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Generating sketches from
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EVALUATION - 3rd Experiment

In each set, the pairwised distances between sketches were calculated based on the perceptual hash.

The unpaired t-test showed that Al-Sketcher and Sketch-RNN had no significant difference.

T SN

Modelf ® | © | ® | © | @ | ®© | & | & | o | o

Input

Mean

30.66

30.97

29.76

29.87

28.98

28.82

29.23

29.45

29.66

30.00

SD

5.18

5.54

5.79

5.84

5.93

6.20

6.08

5.87

5.37

5.83

t(198)

-1.42

-0.53

0.65

-0.92

-1.53

p

0.16 >.05

0.56 > .05

0.51 > .05

0.35 > .05

0.13 > .05

® Al-Sketcher ® Sketch-RNN

Experiments based on QuickDraw Dataset
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POTENTIAL APPLICATION
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CONCLUSION
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We introduced Al-Sketcher, a hybrid deep
learning model to automatically generate high

quality sketch drawings .

Our model improves drawing quality by

- employing a CNN-based autoencoder to
capture the positional information.

 introducing an influence layer to more
precisely guide the generation of each stroke.

« provideding a conditional vector to support

multi-class sketch generation.
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Nan Cao, XinYan, Yang Shi, ChaoranChen

Ly

Tongji University

Intelligent Big Data Visualization Lab

Fa@ceX

A Dataset Containing
5,240,088 Hand-Drawing
Sketches

The dataset contains over 5 million labeled facial
sketches categorized by genders (male, female),
viewing angles (frontal, mid-profile left view),
emotions (neutral, happy, sad, angry, fearful,
surprised, disgusted), and artistic styles (realistic,
cartoon, abstract styles).

DOWNLOAD CONTRIBUTE

Y sVG format: 73 Y NPZ format: 64

https://facex.idvxlab.com/
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