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Fig. 1. The clinical progression of patients with cardiac diseases in MIMIC dataset. The system identified seven stages and the medical
experts further grouped them into five phases according to their interpretation.

Abstract— Event sequence data is common to a broad range of application domains, from security to health care to scholarly
communication. This form of data captures information about the progression of events for an individual entity (e.g., a computer
network device; a patient; an author) in the form of a series of time-stamped observations. Moreover, each event is associated with
an event type (e.g., a computer login attempt, or a hospital discharge). Analyses of event sequence data have been shown to help
reveal important temporal patterns, such as clinical paths resulting in improved outcomes, or an understanding of common career
trajectories for scholars. Moreover, recent research has demonstrated a variety of techniques designed to overcome methodological
challenges such as large volumes of data and high dimensionality. However, the effective identification and analysis of latent stages
of progression, which can allow for variation within different but similarly evolving event sequences, remain a significant challenge
with important real-world motivations. In this paper, we propose an unsupervised stage analysis algorithm to identify semantically
meaningful progression stages as well as the critical events which help define those stages. The algorithm follows three key steps: (1)
event representation estimation, (2) event sequence warping and alignment, and (3) sequence segmentation. We also present a novel
visualization system, ET2, which interactively illustrates the results of the stage analysis algorithm to help reveal evolution patterns
across stages. Finally, we report three forms of evaluation for ET2: (1) case studies with two real-world datasets, (2) interviews with
domain expert users, and (3) a performance evaluation on the progression analysis algorithm and the visualization design.

Index Terms—Progression Analysis, Visual Analysis, Event Sequence Data

1 INTRODUCTION

Across a broad range of application areas, data is frequently collected
in the form of temporal event sequences. Such data typically includes
large numbers of discrete timestamped events, which are then grouped
by a common attribute and ordered to form a collection of event se-
quences. These sequences are often collected in large volumes and
capture patterns of progression, showing the evolution of a focal entity
over different stages. For example, in healthcare, electronic health
records (EHRs) capture timestamped observations (e.g., diagnoses,
medications, procedures) for each patient. An analysis of progression
patterns in this domain might aim to uncover the evolution of a disease
from mild to severe within a specific patient population.

Recognizing the importance and broad applicability of event se-
quence analysis, a wide range of visual analysis techniques have been
developed in recent years. These advances have addressed a wide va-
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riety of algorithmic challenges related to the discovery and analysis
of patterns within complex event sequence datasets. This includes
scalability to large volumes of sequences (e.g., [11, 45]), the ability to
handle high dimensionality (large numbers of event types, e.g., [15]),
techniques for events with attributes [7], and the tight integration with a
variety of pattern mining algorithms for guided exploration (e.g., [37]).

However, it remains difficult to use these techniques to understand
progression patterns within complex event sequence data. One major
challenge is to find similar high-level structures that appear across
the collection of underlying event sequences. Such structures, which
represent latent stages through which entities may evolve over the
course of an event sequence, can be highly informative in terms of
understanding patterns of progression over time.

Determining these latent stages and the patterns through which event
sequences move through the stages, requires the ability to detect evo-
lution patterns which cannot be easily defined using the rigid event
ordering rules. For instance, in a medical use case, a patient may visit
a lab for blood tests just before seeing a doctor, just after, or perhaps
even a day or two later. Semantically, the exact order is not critical.
The important feature in this case is that the events in the patient’s
medical record reflect a particular stage (e.g., outpatient monitoring of
symptoms) in a progression that may lead to different types of events
at a later time (e.g., surgical procedures in a hospital). Unfortunately,
the body of existing work has focused nearly exclusively on the anal-
ysis of hard patterns [14]: exactly matching orderings of events in
which the sequence of event types defining a pattern match an explicitly
defined order. This makes them poor match tasks where detailed differ-
ences in event order as less important than understanding higher-level
progression patterns across stages.

To meet this need, recent work has explored more flexible ap-



proaches. Closest to our work is EventThread [18], which attempted to
tackle the stage identification problem by algorithmically segmenting
groups of event sequences into fixed-width time intervals, then group-
ing similar event sequence segments into clusters (i.e., soft patterns)
within each interval. Each cluster can then be summarized statistically
to characterize a series of latent stages of event sequence progression.
The EventThread approach was shown to be quite useful in identifying
stage progression patterns within evolving event sequences. However,
it has a key limitation: the reliance upon fixed-width time intervals. For
example, EventThread might split medical data into yearly or monthly
segments before stages are identified. However, in medical data, dif-
ferent patients will have differing speeds of disease progression. For
example, one patient may progress from mild to severe heart disease
over multiple years, while another may progress over a period of weeks.
It is not possible for EventThread to identify the occurrence of similar
stages (e.g., mild heart disease vs. severe heart disease) that occur
across differing time scales as in this example.

This paper introduces EventThread 2, or ET2, an entirely new visual
progression analysis technique and system designed to overcome the
time scale limitation in previous work. More specifically, the primary
contributions of this paper are as follows:

• Stage Analysis Algorithm. We introduce a novel unsupervised
algorithm for aligning and segmenting collections of temporal
event sequences to identify latent stages of progression. It ex-
tracts meaningful latent stages of heterogeneous duration to better
reflect the non-linear progression patterns exhibited in many real-
world applications.

• System for Visual Query and Interrogation. We introduce a
dynamic event sequence visual analysis system which combines
temporal queries with a thread-based design to show the event
sequence evolution patterns across the mined stages at three dif-
ferent granularities: low-level sequences of individual raw events,
aggregate sequences showing frequent and rare stage transitions,
and a high-level summarization highlighting the more significant
stage transition patterns. Interactions are provided for users to
explore these views and navigate between them.

• Evaluation. We demonstrate the utility of the proposed approach
in three different ways. First, we review the application of ET2

to a variety of real-world event sequence datasets. Second, we
report feedback from an interview with two expert users from
medical domain. Third, we demonstrate the performance of our
algorithm through a scalability experiment and the usability of
our visualization design through an extra performance interview.

2 RELATED WORK

Event sequence analysis has emerged as an important topic within a
wide range of application areas (e.g., electronic transactions [46], click-
streams [49], medical [32]). Given this broad applicability, a variety
of visualization and computational methods for the analysis of event
sequence data have been developed in recent years. These efforts have
aimed to address the problem from a range of perspectives and analytic
goals, including statistical description, event summarization, classifi-
cation, pattern discovery, decision making, and behavior prediction
(e.g., [10, 17, 26, 47]). This section provides an overview of prior work
in a subset of these topics, focusing on the areas that are most relevant
to the new methods outlined in this paper.

2.1 Sequential Event Pattern Analysis
Mining methods designed to discover sequential event patterns have
been widely studied and often focus on the development of efficient
algorithms for determining the longest and most frequent patterns in
a fully-automated fashion (e.g., [4]). One challenge is that important
patterns can be diffused across large numbers of permutations of sim-
ilar but distinct patterns. To address the issue, some methods extend
frequent pattern matching to dealing with longer sequences by support-
ing the identification of key events [8, 12, 13]. Other methods apply
supervised learning (e.g., [33]) which hierarchically group events into a
higher level of abstraction based on predefined event taxonomies. Unsu-
pervised cluster-based methods have also been explored [2,5,24,25,30],

which aggregate similar event sequences to determine the frequency of
patterns within these latent groups.

The above computational methods provide fully automated solu-
tions, and are highly useful in identifying large numbers of relatively
short recurring event patterns. However, communicating the variety of
patterns identified by the algorithms (and their relative frequencies) to
human analysts is essential for interpretation and can be difficult to do
effectively [20, 29, 31], which motivates many visual analysis based
approaches discussed below.

2.2 Visual Summarization of Event Sequences
Recently, a wide range of visual analysis techniques for event sequence
data have been developed. For instance, Lifelines [34] focused on
summarizing individual patient records, while a later version Life-
line2 [40] improved the scalability for their approach by developing
a tree-based aggregate representation to display the permutations of
event occurrences and their proportions for groups of patients records.
Outflow [44] similarly captured all permutations of event occurrence
based on a graph-based model. EventAction [9] summarized event
data occurring within a common time period, and explored potential
outcomes for behavior prediction and recommendation.

These techniques help communicate various forms of sequential pat-
terns, but rely on permutations in the order of event type occurrence to
build the visual representations (i.e., “hard patterns” [14]). This limits
their usage in many real-world applications where a large number of
event types will lead to a combinatorial explosion in permutations of
event order. In comparison, this paper introduces novel stage-based
analysis and visualization methods aimed at summarizing event se-
quence progression through a set of latent stages over time. These
stages are then used to summarize aggregate progression over time,
using higher-level representations (i.e., the stages) which gather into
the same stage similar but distinct event subsequences.

2.3 Stage Analysis
Stage analysis in event sequence data help reveal the progression of
the event development. For example, when dealing with the EHR data,
many traditional disease progression models such as [21,36,38,39] are
developed based on clinician’s experiences and their subjective assess-
ments, but most of them produce imprecise results that can hardly used
in real scenarios. Recent work has leverage advanced machine learning
techniques, thus producing more precise results. For example, Wang et
al. [41] introduced an unsupervised disease progression model, which
is composed of a three-layer network and based on continuous-time
Markov models and the standard EM algorithm. Yang et al. [48] de-
veloped a novel statistical model to classify event sequences and infer
progression stages within each sequence category. These approaches
perform well in identifying latent stages within a single event sequence,
but are not capable of aligning and segmenting event sequence collec-
tions. In addition, the results of these methods are difficult to interpret.
In contrast, our proposed algorithm can automatically segment and
align a collection of event sequences with similar progression stages,
and generate different levels of summarization to support interpretation.

2.4 Visual Analysis of Progression
Paralleling the recent interest in stage analysis and representations
of progression that exist at a higher level than event permutations,
visualization techniques have also been proposed to support interactive
progression analysis. This includes work such as DecisionFlow [15]
and related projects [16, 17] which aggregate event sequences into
stages via manually identified milestones.

Rather than rely on manual milestone selection, the visual analytics
method proposed in this paper includes a novel stage analysis algorithm
to determine stages more systematically. In this sense, the most closely
related work is EventThread [18], a recently published visual analytics
system which incorporates automatic progression analysis methods.
However, in EventThread, the length of a stage is predefined using a
fixed size. This is a critical limitation which poorly reflects real-world
scenarios as differences in time scale across stages can be critical,
which is a major motivation in the work proposed in this paper.



Fig. 2. The ET2 system contains three key modules: a preprocessing
module, an analysis module, and a visualization module. Together, these
modules support a comprehensive and interactive analysis of the latent
progression stages within a collection of event sequences

3 SYSTEM OVERVIEW

Our system is designed to support interactive progression analysis of
event sequence data. The development of ET2 began with the identifica-
tion of a set of key design requirements based on (1) the authors’ own
first-hand experiences working with users analyzing this form of data,
and (2) a review of both the features and limitations of existing tools
such as EventThread [18]. These design requirements are summarized
as follows:
R1 Query capabilities to focus the analysis of large-scale event se-

quence datasets. Large collections of real-world event sequence
data typically contain very diverse sequences, often with little
overlap in observed events. This heterogeneity can make it diffi-
cult, and less useful, to view all sequences at once. Instead, users
often wish to apply initial queries against the full collection to
focus an analysis on specific sets of sequences. Such a query
capability allows the user to restrict an analysis to sequences that
meet a set of inclusion/exclusion criteria. For example, in a medi-
cal analysis the user may query to see all sequences related to a
specific diagnosis or treatment rather than “all patients.”

R2 Stage-based progression summaries to facilitate interpreta-
tion and reasoning. Complex event sequence datasets can con-
tain vast numbers of event types, meaning that even very similar
sequences will vary significantly in both the events observed and
the order of occurrence when viewed at the level of individual
events. To facilitate high-level understanding, an analysis system
should be able to organize groups of semantically related events
into latent stages which capture the overall progression of a subset
of sequences, such as stages in disease progression over time.

R3 Time-varying stages to reflect non-linear speed of progres-
sion. Many real-world event sequence datasets capture informa-
tion about progression patterns which evolve at different rates
between and within sequences. For example, medical conditions
may progress at different rates between patients, and at different
points in the treatment of a single patient. Thus, the stage-based
summary should reflect this time-varying requirement.

R4 Multi-granular summarization to reveal progression pat-
terns at different levels. The system should be able to provide
both low-level information (i.e., patterns of raw event) and high-
level information (i.e., patterns of stages over time ) about how
event sequences progress. In this way, the system will provide
both low-level interpretations of the progression patterns, as well
as a higher-level understanding of sequence progression.

R5 Interactive analysis environment to explore results from mul-
tiple perspectives. The system should provide a unified interface
to meet the above requirements. This experience should be intu-
itive and integrated, allowing analysts to link findings at different
granularities and time scales, to compare findings, and to under-
stand both individual stages and the transitions between them.

Based on the above requirements, we developed the architecture of
the ET2 system as shown in Fig 2. This design includes three major
modules: (1) the preprocessing module, which transforms the raw se-
quence data into a database for subsequent query and analysis (R1);

(2) the analysis module, which extracts progression patterns from the
raw event sequence data (R2,R3,R4); and (3) the visualization module,
which provides multiple coordinated views to support result interpreta-
tion and interactive stage analysis (R5).

4 PROGRESSION ANALYSIS

This section formalizes the problem of progression analysis and intro-
duces the analysis pipeline developed to address this problem.

4.1 Algorithm Overview
The goal of progression analysis is to automatically infer the latent
stages underlying a set of event sequences. We develop an algorithmic
approach that is designed based on three intuitive assumptions. (1) The
analyzed event sequences should have a similar progression process.
For example, the medical records of patients with the same type of
disease. This assumption requires a pre-filtering (R1) of the data to
retrieve similar sequences. (2) The sequences may vary in number of
events, duration, and pattern of progression through different stages.
For example, patients with the same medical conditions may respond
differently to treatments and their symptoms may progress at different
rates of speed. (3) The progression process is irreversible.

Based on these assumptions, we propose an unsupervised progres-
sion analysis algorithm to segment event sequences into stages through
three major steps: (1) estimation of event representation, (2) event
sequence alignment, and (3) sequence segmentation. The first step
employs a neuron network model to convert each event into a vector
representation that captures event co-occurrence probabilities. The
second step performs time shifting and warping to align and aggregate
event sequences. In the third step, the aggregated sequences are seg-
mented into latent stages using an optimization-based algorithm. This
process is illustrated in Fig. 3 and described in detail below.

4.2 Estimation of Event Representation
The process of segmenting an event sequence into stages is similar to the
task of segmenting a sentence into thematically consistent sub-phrases
in text mining. The key is to identify the expected likelihood of event
pairs co-occurring in close proximity. In text mining, word embedding
methods based on neural-network models (e.g., skip-gram [27]) have
been proposed to address similar problem. These methods generates
a latent vector representation for each word in a text corpus such that
the distances between vectors indicate the co-occurrence likelihood
between words. Following a similar idea, we develop an event embed-
ding algorithm which converts each event into a vector derived from
the context of surrounding events within a given group of sequences.
Thus, the co-occurrence likelihood of the events is also captured by the
distance between their vectors. Here, each event sequence is analogous
to a sentence, in which each event is analogous to a word.

When applied to event sequence data, we use skip-gram to estimate
the occurrence likelihood P(e j|ei) of an event e j given the occurrence
of event ei. This model is a three layer neural network (as shown
in Fig. 3(1)). The input layer takes an event ei as input with each
neuron in the layer corresponding to a field of ei’s one-hot vector [42].
(2) A hidden layer compresses the sparse input one-hot vector into a
dense latent vector with a much lower dimensionality. The embedding
matrix that connects the input and hidden layer is learned during the
training process. Each row of the matrix is a vector that captures the
neighborhood context of an event in the dataset and is the vector that
we aim to compute. (3) The output layer calculates P(e j|ei) based on a
softmax function [43].

We train the above model based on the entire dataset with the goal of
maximizing P(e j|ei) for each input event ei (i.e., find the set of events
that are most likely to co-occurred with ei), which is equivalent to
minimizing the following loss function:

J =−
M

∑
m=1

n

∑
i=1

n

∑
j=1

log(ωi j ·P(s
( j)
m |s

(i)
m )), |ti− t j| ≤ T (1)

where M indicates the number of event sequences in the training set;
n is the length of an event sequence; s(i)m = (ei, ti) indicates the i-th
event ei occurred at time ti inside the m-th sequence sm; P(·) is the



Fig. 3. Progression analysis includes three major steps: (1) event representation estimation, (2) sequence alignment, and (3) sequence segmentation.

aforementioned probability to be maximized. ωi j is a weight which
controls how the training samples are generated. In text mining, the
training samples of the above model are given in the form of word pairs
(the input word and a nearby word), which is generated by sampling
within a fix-sized sliding window. However, unlike words in a sentence,
event sequences capture both order and time intervals between events.
For instance, two adjacent events occurring on the same day tend to
have a stronger connection than adjacent events separated by a longer
duration. Thus, instead of sampling training data using a fix-width
window, we give different weights ωi j for different training samples
〈(ei, ti),(e j, t j)〉 according to their time interval. This is defined as:

ω〈(ei, ti),(e j, t j)〉=

{
exp(−|ti− t j|/θ) |ti− t j| ≤ T ,
0 otherwise

where (ei, ti) indicates the i-th event ei and its timestamp ti in a se-
quence, θ is the decay coefficient, and T is the maximum time span.
This idea is inspired by [19], which summarized the temporal relation
between events into a compact graph and generated synthetic samples
for training. In our method, however, event pairs are sampled from real
data and we directly multiply each sample by its corresponding weight
in the loss function. In this case, event pairs with shorter time intervals
will be assigned a higher weight to imply stronger correlation and thus
they will have a greater impact on the final regression.

The computation of the event vectors costs O(|E|2), where |E| is the
number of total events. This step is calculated in an offline procedure
which will not effect the performance of the online system.

4.3 Alignment
Event sequences captured in real-world settings, even when recording
multiple instances of the same process, can vary dramatically in length
and exact event orders. For example, multiple patients suffering from
the same disease may have doctor visits at different times, they may
have symptoms appear or recede at different speeds, and they may
have distinct sets of co-morbidities. These differences will result in
electronic health records of different length and with different events
that nonetheless represent similar disease progressions.

In these cases, simply aligning sequences based on the first event or
an arbitrary alignment [18,28] will not allow the aggregate progression
patterns of interest to emerge. Instead, it is necessary to align event
sequences based on their implicit semantics. To this end, we employ
Dynamic Time Warping (DTW) [23] to align a group of event sequences
with variable lengths and event orders (as shown in Fig. 3(2)).

In particular, our algorithm employs an iterative alignment pro-
cess starts by constructing a mean-sequence S = 〈(ε1, t1), . . . ,(εn, tn)〉
initialized by the longest sequence in the dataset with the vector rep-
resentation denoted as V = (v1,v2, . . . ,vn). In each iteration, an input
event sequence is matched and merged to the mean-sequence via DTW,
and the corresponding mean event vectors are also computed. Events
in a sequence are treated as equidistant points sampled along the time
axis, and the distance between a pair of events is determined by the Eu-
clidean distance between the corresponding event vectors. DTW is thus
applied based on these settings. In our implementation, FastDTW [35]
is used for computational efficiency. The algorithm continues until all
sequences have been merged. The resulting mean vector representation
is noted as V̄ = (v̄1, v̄2, . . . , v̄n). The overall time complexity of this
alignment step is O(M(n−1)), where M and n indicate the number of
sequences and the length of the mean sequence, respectively.

4.4 Segmentation
In the final step, the mean-sequence S is split into segments (i.e., latent
stages), which are then unpacked to derive the segmentation for each
individual sequences (as shown in Fig. 3(3)). We borrows the idea of
text segmentation and employs the Content Vector Segmentation (CVS)
algorithm [1], which was originally introduced to divide document
into coherent sections. Here, we treat the mean-sequence S as a non-
fragment document, and each aggregate event as a word. Thus we are
able to use algorithm to divide the sequence into coherent segments.

Intuitively, the design rationale of the algorithm is based on the
assumption that events within the same segment (i.e., stage) should
share similar semantics. Thus, a latent vector ck is introduced to capture
the semantic context of each segment pk. Based on this assumption,
an event ei will be assigned into segment pk if it has a high coherence
with the context ck which is given by vi · ck, where vi is the vector
representation of ei. Therefore, the goal of the algorithm is to learn an
optimal c∗k for each putative segment pk which maximizes the overall
coherence scores within each segment:

c∗k = argmax∑
i

vk
i · ck

where vk
i is the vector representation of the i-th event in the k-th seg-

ment; ck is the semantic context vector of the k-th segment with each
field representing a latent topic [3]. For each segment pk, the context
vector ck is calculated field by field as follows:

ck(d) = sign( ∑
i∈pk

vk
i (d))

where ck(d) is the d-th field in vector ck; vk
i (d) refers to the value in

d-th field of ei’s vector representation vk
i .

A greedy algorithm has been used to approximately, but efficiently,
solve the above optimization problem. In each iteration, it splits S or
a subsequence of S into two parts at the place which maximizes the
sum of ck over all k segments. The algorithm stops automatically when
the best available split results in a total score increase that is smaller
than a threshold. We refer to the final number of segments after the
greedy algorithm completes as K and the length of the mean sequence
as n. The time complexity of the algorithm is O(n2K), correspondingly.
Finally, we unpack S into individual sequences inheriting the stage
information from S, and the segmentation result of each individual
sequence is delivered to the visualization module for visual analysis.
Note that if an event is aligned with multiple elements fell into different
stages on the mean sequence, it will follow the element with highest
similarity and get assigned to the corresponding stage.

5 VISUALIZATION

This section presents the ET2 visualization and interaction design. It
enumerates a set of design tasks that motivate the system’s design
choices, then describes the system’s key views and user interactions.

5.1 Design Tasks
The visual and interaction design for the ET2 system has been devel-
oped to support a set of motivating design tasks. The tasks were defined
in response to our prior experience developing event sequence analysis
techniques, lessons learned during ongoing collaborations with users
who analyze temporal event sequence data, and the system requirements
outlined in Section 3.



Fig. 4. The user interface of ET2 consists of seven coordinated views: (1) query view, (2) sequence view, (3) cluster view, (4) thread view, (5) stage
transition view, (6) event overview, and (7) entity list view.

T1 Allow custom queries of the event sequence data. Real-world
event sequence datasets may have little in common. To help
users focus an analysis by pre-filtering to a relevant set of event
sequences, the visualization system should support queries against
the sequence database with time-based constraints.

T2 Display progression by stage. To help users understand pro-
gression patterns, the visualization should clearly identify the
boundaries between distinct stages and the order in which they
occur. The visualization should also provide information about
boundary events to help users understand what contributes to the
beginning or end of a stage.

T3 Provide detailed views of sequence segments aggregated
within a given stage. Due to the scale and diversity of the event
subsequences that contribute to the definition of a stage, the vi-
sualization should be able to communicate both common and
exceptional patterns and to allow comparison.

T4 Indicate the key events which characterize a stage, and pro-
vide an overview of transition patterns between different
stages. To allow users to semantically interpret the meaning of
each stage, it is important to provide overviews of the key events
which contribute to a stage’s definition. In addition, the visualiza-
tion should communicate the overall state-to-stage progression
patterns found within a dataset.

T5 Facilitate visual data exploration and comparison. Given the
proposed data-driven approach to progression analysis, it is crit-
ically important to provide users with a way of exploring and
comparing the extracted stages and evolution patterns across dif-
ferent levels of aggregation. The visualization should support this
need through rich user interactions and coordinated views.

5.2 User Interface
Guided by the aforementioned design tasks, we developed the ET2

visualization system as shown in Fig. 4. The user interface consists
of seven key views, beginning with the query view (Fig. 4(1)) which
employs a milestone-based query method that allows users to query the
sequence database with time-based constraints (T1).

Four coordinated views were designed to display stage analysis
results at different levels of summarization once the query has been exe-
cuted, including: a sequence view (Fig. 4(2)), a cluster view (Fig. 4(3)),
a thread view (Fig. 4(4)) organized as tabs across the top of the interface,
and a stage transition view (Fig. 4(5)). The sequence view displays the
segmentation results for each individual sequence in a scrollable list,
with additional details such as the duration, starting event, and end event
for each segment (T2). The cluster view aggregates segments within
each stage into clusters and presents the evolution pattern between
clusters across the different stages. An overview of the starting and

ending events and the frequent subsequences is provided as the context
of each cluster (T3). The stage transition view further aggregates the
clusters in the same stage, showing the event distribution and transition
patterns across different stages (T4). The thread view displays the
latent clusters of similarly evolving sequences identified through tensor
analysis [18] (T3) and provides the highest level of summarization
with the maximal visual scalability. The event overview (Fig. 4(6))
provides a t-SNE projection of event vectors, which allows users to
compare how events co-occur within the given stage (T5). Finally,
the entity list view (Fig. 4(7)) presents a detailed profile of individual
entities as determined by the current selection. This provides users with
easy access to the raw underlying events within a given sequence (T5).
Brushing and highlighting techniques are applied throughout the views
to facilitate exploration across these coordinated views.

5.3 Sequence View

The sequence view aims to help users explore raw event sequences
within the progression context (T2). For example, a doctor may want to
investigate the overall disease progression of a patient while inspecting
the key diagnosis events and comparing the patients with similar pro-
gression patterns. To this end, the design should balance between the
specific event details and the overall progression stages. To facilitate
comparison, the design should also be able to align different sequences
based on their progression process.

Following the above requirements, each sequence (Fig. 5(a)) is
organized into columns aligned with K stages (Fig. 5(b)). This design
choice facilitates the comparison of multiple sequences within the same
progression stage. Adjacent stages are visually separated using vertical
dashed-lines to highlight the stage boundaries. Each stage segment is
depicted using a pair of labels (Fig. 5(c)) indicating the first and last
events in the sequence segment. This design helps highlight key events
which may signal a stage transition. The label pairs are connected
by a solid light-grey line, which is overlaid with one of two distinct
visual representations: a duration bar (Fig. 5(e)), or a detailed event
timeline (Fig. 5(d)). The length of the duration bar, shown by default,
encodes the duration of the segment within the sequence. The bar is
color-coded with the event category that occurs most frequently within
the segment to communicate a high-level summary. The detailed event
timeline provides details-on-demand by encoding each individual event
as a color-coded (by event category) rectangle whose x-axis position
is determined by the event’s relative time of occurrence. Users can
switch between these two visual representations by clicking on any bar.
When a sequence has no events within a particular stage, the segment
is visualized as a dashed-line across the given stage (e.g., Fig. 5(f)).
This design helps visually distinguish segments that were absent (e.g.,
a skipped disease stage for a patient) within a given sequence.



Fig. 5. The visual design of the (1)sequence view and (2)cluster view. The sequence view shows the progression analysis results for individual event
sequences. Sequence segments in different stages are grouped into clusters and represented using rectangular nodes in the cluster view.

5.4 Cluster View
The cluster view (Fig. 5(2)) provides a higher-level summary of progres-
sion patterns of multiple event sequences by grouping similar segments
at each stage. This view is critical for summarization, illustrating
the most common sequential patterns (e.g., typical care plans within
a patient cohort) and helping to identify segments that are more dis-
tinct (T3). To facilitate interpretation of the summary, the visual design
integrates high-level progression patterns with low level event details
within each progression stage.

5.4.1 Visual Design and Encoding
As illustrated in Fig. 5(2), each cluster of event sequence segments
is displayed as a node (see Fig. 5(g)) which provides a visual sum-
mary of the cluster. Cluster nodes are arranged from left to right in
the order of occurrence, and linked with edges to show transitions
between clusters from stage to stage. The height of each cluster node
is proportional to the number of event sequence segments contained
in the cluster, with the label on the left side of each node providing
the exact number (Fig. 5(l)). This node-link visual design was chosen
to provide a flow-graph-like representation of the pathways through
which sequences progress from stage to-stage over time, as well as the
number of sequences which pass through each stage.

To help with interpretation, each node illustrates the frequencies
of starting and ending events within a cluster (which often signal a
transition in stage) as well as the frequent event patterns found within
each cluster. The frequencies of starting and ending events are displayed
at the left and right end of the node, respectively (Fig. 5(i)). We
use treemaps to encode this 1-D data because it is spatially compact
and allows for fast comparison across nodes [6]. Frequent sequential
patterns are identified within each clustered stage based on VMSP
(Vertical Mining of Maximal Sequential Patterns) [12], and visualized
in the interior of the cluster node beneath the duration bar (Fig. 5(k)).
Each row represents a unique sequential pattern, with color-coded bars
representing key events within the pattern. Finally, the average duration
of the segments within a cluster is encoded using the length of the
bar located at the top of each stage (Fig. 5(j)). This overall design
is intended to communicate high-level patterns (size and progression
across stages) and support the semantic interpretation of individual
stages (event types, frequency, and duration).

5.4.2 Layout Algorithm
Given the visual design outlined above, a critical and challenging
aspect of the cluster view is the spatial layout of the cluster nodes. This
section describes the novel layout algorithm used by ET2 to address this
challenge. The algorithm has two steps: (1) the insertion of intermediate
nodes, and (2) the positioning of cluster nodes.

Insertion of intermediate nodes. Transitions from cluster to clus-
ter (represented as edges between cluster nodes) can be categorized
into two types: (1) regular transitions between adjacent stages, and
(2) spanning transitions which extend across multiple stages. For regu-
lar transitions, clusters can be linked in straightforward fashion using

a straight edge. For spanning transitions, which skip over columns in
the visualization, naively drawing straight edges may result in overlaps
between non-connected edges and nodes. To address this challenge, we
first insert implicit “intermediate nodes” to convert spanning transitions
into a series of regular transitions that connect the real nodes through
a series of intermediate nodes. These intermediate nodes will not be
rendered, but are used to aid in the layout process. To further simplify
the visualization, when multiple intermediate nodes are inserted into a
given section, they are clustered using the same Mean Shift Clustering
algorithm used to cluster the regular nodes. The clustering algorithm is
applied to intermediate feature vectors that are calculated by interpo-
lating between the average feature vectors for the starting and ending
clusters of the corresponding spanning transitions. This method helps
produce simplifying groups of spanning edges (Fig. 5(h)).

Positioning of cluster nodes. The layout algorithm first sets the
x-position of all cluster and intermediate nodes according to the stage
of the corresponding segments, which aims to keep x-axis positions
aligned between the sequence view and cluster view. It then calculates
the y-position for each node based on a pairwise similarity score ap-
plied to nodes within each stage. Formally, the layout constraints are
formulated as an optimization problem, which aims to minimize the
following layout energy:
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where ωi j is the inverse quadratic Euclidean Distance of the corre-
sponding cluster centers of nodes i and j: ωi j = 1/‖vi− v j‖2, which
is proportional to the similarity between node i and j, and yt

i is the
vertical position of a node i at stage t. θik indicates the proportion of
entities that flow through the kth edge destined to node i. Intuitively,
the first term minimizes the distance between nodes with higher simi-
larity, while the second term preserves the layout position of each node
across the transition flow. These two terms are balanced by a parameter
α ∈ [0,1]. The energy is minimized in an iterative procedure, with the
adjacent stage pairs reordered (i.e., stage t and t + 1, or stage t and
t−1) at each iteration until the energy convergences.

To help users make a better comparison of the similarity between
different stages, we further organize the nodes within the same stage
into groups based on the y-position calculated using the procedure
outlined above. This is achieved by grouping neighboring cluster
nodes for which differences in y-axis positions are below a minimum
threshold(as shown in Fig. 5(m)). The resulting groupings are used to
structure the layout with vertical white space.

5.5 Other Views
A variety of other linked contextual views are also included in the sys-
tem to enable a comprehensive representation of the data (Section 5.6),
which in turn support users in flexible data exploration, pattern inspec-
tion, and comparison (T5).

Query View. The query view employs a milestone-based query capa-
bility [15] which allows users to select specific sequences that match a



user’s analytical interests. Users can specify an ordered list of milestone
events (Fig. 4(a)) and a range of sequence length length (Fig. 4(b)). In
response, the system will retrieve only the event sequences which have
the specific events appearing in the specified order for analysis.

Event Overview. The event overview illustrates the contextual in-
formation of each event through t-SNE projections of the event vectors
defined in Section 4. Each event is represented using a color-coded
circle based on the event category. The distance between two events
reflects their contextual correlation, meaning that events that appear
closer in this view have a higher probability of co-occurrence.

Stage Transition View. The stage transition view provides a very
high-level summarization of events within each stage and the progres-
sion paths through which entities flow over time (T4). Each stage is
represented by a treemap which shows the frequency of events associ-
ated with a specific stage. The stages are linked with directed edges
showing various progression paths that entities follow as they transit
into and out of the stage. The width of each edge is proportional to the
number of entities that follow the corresponding transition.

Thread View. The thread view displays the event sequence progres-
sion using the visual method first proposed in the EventThread [18]
system. Here, each thread represents a latent evolution pattern, while
nodes on each thread convey the events that are most strongly associ-
ated with a specific evolution path (Fig. 4(c)). We overcome a critical
limitation of the original EventThread system (the use of fixed time in-
tervals to segment event sequences) by incorporating the stage analysis
results of the algorithm described in Section 4 to segment sequences to
derive more meaningful latent evolution patterns.

Entity List View. The entity list view, as shown in Fig. 4(7), pro-
vides users with detailed information about individual entities, includ-
ing the raw low-level event sequence data that serves as the original
input for the ET2 system .

5.6 Interactions
The ET2 design includes a variety of user interactions which together
support a variety of exploratory analysis tasks.

Dynamic stage manipulation. The ET2 system allows users to ma-
nipulate the stage analysis results through three different operations:
stage merging, stage splitting, and stage folding. Users can perform a
merge on neighboring stages by selecting the stages to be merged in the
transition view, then right clicking to raise a context menu (Fig. 4(d)).
Users can also use the transition view to split a stage into two via the
operations on a context menu. In a process that is similar to how split
points are determined for the full event sequence, the stage analysis
algorithm will automatically find the best possible alignment and seg-
mentation of the stage to be split. Finally, users can fold a stage that
they decide is unimportant for an analysis. This doesn’t change the
segmentation, but reduces the amount of information displayed to the
interface as shown in Fig. 4(e). These interactions allow users to in-
teractively adjusting the segmentation process and the resulting stages,
with the goal of creating more meaningful latent patterns in both cluster
and thread views.

Filtering. The system supports two different types of filtering: entity
filtering and event filtering. First, users can filter out a group of one
or more entities by clicking on a stage node or transition edge in the
stage transition view. For example, patients moving through stage
seven is filtered out in Fig. 4(f). As a result of this filter operation,
the entities that remain in the visualization all jump over the filtered-
out stage. Second, users can filter out specific types of events for
analysis by brushing event circles in the event overview (Fig. 4(g)), or
by interacting with the event drop-down list shown in Fig. 4(h).

Highlights and Tooltips. Linked-highlighting is used widely within
various ET2 views to help users identify corresponding elements such
as events, stages, and transitions during interactive analysis. For exam-
ple, when users click on a sequence in the sequence view, the entire
sequence will be highlighted to help users locate corresponding seg-
ments in different stages. Similarly, when users hover over a cluster
node in the cluster view or a stage node in the transition view, all of
the transition paths for the corresponding entities will be highlighted
to help users capture the associated progression patterns. Informa-

tive tooltips (Fig. 4(i)) are provided in all views to provide users with
additional information in place as they navigate the visualization.

Details-on-Demand. A variety of user interactions support access
to details-on-demand for different types of structures. As mentioned
above, tooltips are available for many graphical marks. In addition,
users can click on the duration bars in the sequence view to display
a more detailed event-based timeline view of the segments (as men-
tioned in Section 5.3). In the cluster view, users can select individual
cluster node to switch back to the sequence view to view more de-
tailed information about the corresponding sequences. Users can also
zoom into particular stages through brushing on the stage transition
view (Fig. 4(j)). Moreover, the event overview and entity list view are
updated interactively based on selections in other views to provide
additional details about the selected items.

6 EVALUATION

We evaluate the effectiveness of the ET2 system via case studies, follow-
up interviews with expert users, and a performance evaluation focused
on scalability of the system.

6.1 Case Studies
We demonstrate the capabilities of ET2 by analyzing real-world data
from two domains: medicine and career advancement.

Case Study 1: Clinical Progression. We applied ET2 to a pub-
lic critical care dataset, MIMIC [22], which contains de-identified
electronic health records of 46,521 patients who were admitted to the
intensive care unit (ICU). Those records contained over 11,000 types of
timestamped events, organized into seven categories, including hospital
admission and discharge, death, ICU admission and discharge, prescrip-
tions, infusions, laboratory tests, and microbiological test. We invited
two experts to help us evaluate the usability of ET2 system. The first
expert (E1) was a cardiologist with 12 years of clinical experience, and
the other one (E2) was his PhD student. During the study session, the
experts explored the visual analysis result and provided feedback on
its usability and usefulness. The process was recorded for subsequent
analysis and discussed in Section 6.2.

After a brief introduction, the experts started the exploration by
querying the dataset to retrieve a group of 145 patients diagnosed
with cardiovascular disease. The system automatically analyzed the
progression of this group and identified seven stages (Fig. 1). The
experts briefly inspected the raw event sequences displayed in the
sequence view before switching their focus to the cluster view. The
major cluster nodes in each stage where most of the patients were
involved immediately caught the experts’ attention. They clicked on
several of the nodes to highlight a major progression path and inspected
the treemaps and frequent patterns. Next, they drilled down to explore
each of the stages to identify semantically meaningful phases.

By reviewing the frequent patterns, the experts found the first stage
captured events about hospital admission. They also noticed two
medicines (Acetaminophen and Aspirin) were used for many patients
for pain relief and the easing the cardiac infarction. A lab test for
kidney function, Creatinine, was also commonly performed. “These
are necessary actions for preventing renal injury when treating patients
with cardiovascular diseases” the cardiologist said. Both of the ex-
perts were impressed by our design and believed that “the cluster view
was very informative.” They also confirmed that the details shown in
treemap and the frequent patterns shown inside the stage nodes and the
corresponding tooltips were very useful for allowing them to interpret
the meaning of a stage.

After checking the event details shown inside stages two and three,
the experts believed that these two latent stages belong to the same
phase, in which the prescriptions such as Metoprolo (for reducing heart
failure risk after myocardial infarction) and Insulin & Dextrose 5% in
Water(D) (for decreasing potassium levels in blood serum) were made
based on results of a set of routine lab examinations such as blood tests.

The fourth stage splits into two groups that attracted the experts’ at-
tention. They investigated and comparing these two groups, discovering
that they illustrated two different treatment plans for different patients.
“The patients in the upper group have acute coronary syndromes” said



Fig. 6. The progression analysis result of scholars’ academic behaviors. ET2 produced 13 progression stages, from which three higher-level phases
can be derived: (a) education, (b) promotion, and (c) transition period.

by the doctor, “this is why Integrelin and Heparin are used to reduce
the risk of death.” They also identified the corresponding key events
for the group. In comparison, patients in the lower group took Calcium
Gluconate, which is used to treat Hyperkalemia. The doctor confirmed
the usefulness of the stage analysis algorithm, commenting that “the
automatic stage analysis results are very meaningful” and “it will be
very useful and interesting to demonstrate the disease progression [in
ET2 ] when [our own] data is available.” The other expert stated that
“it is impressive and interesting to actually see these paths (the different
treatment plans) [emerge from] the view.”

The experts believed that the fifth and sixth stages were both re-
lated to operations after using the visualization to see that patients in
these stages commonly received infusion treatments (e.g., Propofol
and D5W). These medications are mainly used to maintain the state of
general anesthesia and vital signs during surgeries. The medications
Bisacodyl and Acetaminophen (used to relieve common postoperative
symptoms such as constipation and fever) were also observed.

Finally, they labeled last stage as the “Discharge” phase after notic-
ing many laboratory tests used to preparing patients for home. These
sequences often end with a discharge event. In general, both experts ap-
preciated ET2’s ability to automatic identify progression patterns, and
confirmed that the visual designs of the sequence and cluster views ef-
fectively supported clinical interpretation and comparison of the stages.

Case Study 2: Academic Career Paths. We also tested ET2 on
an academic dataset consisting of career path milestone events for 39
university professors over 23 years. The data consists of 10 event
types such as obtaining a degree, changing the job title, and publishing
conference/journal papers. These were classified into three high-level
categories: education, publication, and promotion. ET2 generated
13 progression stages for this dataset (Fig. 6). A senior PhD student
major in computer science was invited to participate in this study. We
observed his behaviors and report the findings as follows.

The stage transition view immediately caught the user’s attention,
from which he successfully identified the overall trajectory of profes-
sors’ academic career paths. “This view intuitively shows people are
educated at the early stages and get promoted later.” He also found pub-
lication events were evenly distributed throughout the entire process:
“It seems all the professors are productive at any stage of their career.”
These observations highlight the usefulness of the stage transition view.

A detailed inspection on the cluster nodes inside each stage help
the user further interpret the stage analysis results. Specifically, he
found that stages 2-4 correspond to the events when people get their
degrees, and that they occurred after they published a set of papers at
stage 1 (Fig. 6(a)). The user confirmed that “the cluster view has pro-
vided a direct and clear [guidance].” Following a similar procedure, the
user found that stages 5-7 indicate the phase in which people increase
their publications and gradually work toward their first faculty position
(Fig. 6(c)). Some outliers skipped this phase, jumping directly into the
next phase (Fig. 6(e)). A detailed inspection of these career paths in
the sequence view found that these outliers obtained assistant profes-
sorships right after graduation. This pattern was also visible among
frequent patterns displayed in the cluster node at stage 4 (Fig. 6(f)).

He then noticed that the paths merged into one cluster at stage 7 and
then split again into two branches, representing two different promotion
paths. The top branch showed promotions from Associate Professor
to Full Professor and the bottom branch represented promotions from
Assistant Professor to Associate Professor. Moreover, the user found
people progressing along the lower branch commonly received a subse-
quent promotion at stage 11 and became Full Professors at stage 12. He
also observed a gap between their first and second promotions at stage
10 where a large number of publication events occurred, indicating a
process of publication accumulation. The user was impressed by our
system. He said, “although it takes time to read the diagram, the rich
findings are quite impressive” and “the [cluster] view is very powerful
in terms of illustrating many details in the progression context.”

6.2 Expert Interviews

Expert users from the medical (E1,E2) and career path (E3) case studies
took part in follow-up interviews to provide additional feedback. Their
comments are summarized below.

Automatic Stage Analysis. All three experts commented generally
on the usefulness of the automatic stage analysis supported in our sys-
tem. In particular, E1 believed our technique is useful for illustrating
the disease progression process. E2 mentioned that “we used to com-
pare historical records of patients manually, which is laborious and
time-consuming. This system can be really helpful in automatically
finding out and revealing common patterns of the patients at each clini-
cal stage”. Both E1 and E2 suggested that “the technique will be more
useful if it can be used to analyze a particular chronic disease such as
COPD” (in contrast to the heterogeneous ICU data from MIMIC), and
E3 felt the stage analysis algorithm was able to produce “precise and
meaningful results”.

Visualization Design. All of the experts felt that the cluster view
was highly effective. E1 commented that “it is the most informative
view” in the system and E2 agreed. Both E1 and E3 felt that the design
of the cluster nodes were very useful for interpretation. E1 said: “the
information displayed in the cluster node is very comprehensive...It
can help us differentiate different treatment plans at each stage.” E3
also mentioned the frequent patterns shown inside the cluster nodes are
“very meaningful”, are “good summarizations of complex sequences”,
and can avoid “showing too much unnecessary details”. When asked
about the sequence view, E1,2 felt the design successfully illustrated
events in a progression context.

System. The experts felt that ET2 is useful, and that it is generally
easy to use after a short training period. E1,2 were particularly inter-
ested in using ET2 to explore their own data and suggested that we
make the system available online. E3 also suggested to use the system
for analyzing and comparing careers paths in different fields. All the
experts felt the “query mechanism” in our system is an “essential part”
of the system. Despite these positive comments, however, the experts
at times also felt slightly overwhelmed by ET2’s user interface as it
contained “too many views” (E1,3), or contained “too much graphical
information with too little text” (E1,2). E1 explained: “I have to ex-
plore and interpret a large number of visual elements and event types,



Fig. 7. The performance of two key algorithm steps when the size of the
dataset and the averaged length of the sequences were changed.

Fig. 8. The readability rating by the expert users of the sequence view
and cluster view when showing datasets with different sizes.

..., I am more familiar with textual representations”. However, they
also agreed that after learning the design and encoding scheme, the
interface became “more meaningful and easier to interpret”. They also
suggested to removing the event overview as it was often too dense or
too sparse to be effectively used.

6.3 Performance Evaluation
We evaluated the scalability of ET2 via both a quantitative evaluation
of the algorithms and a qualitative evaluation of the visual designs. The
datasets we used are all subsets collected from the MIMIC dataset.

Scalability of the Algorithm. To evaluate the stage analysis al-
gorithm’s scalalbity, we tested the performance of its key steps on
a series of different sized event sequence collections (varying both
the number of sequences and the average sequence length) sampled
from the MIMIC dataset. Two key computation steps in the algorithm,
alignment and segmentation, were tested on a four-core (Intel Core
i5 CPU@3.2GHz) iMac computer with 8GB memory. The results,
summarized in Fig.7, suggest that the performance bottleneck is the
sequence alignment as DTW is computationally complex. Its perfor-
mance depends strongly on the number of events, which is in turn
determined by both the collection size and the average sequence length.

Scalablility of the Visual Designs. We examined the scalablility of
the sequence and cluster views through a qualitative evaluation with the
two medical expert users E1,2. The users were asked to examine results
via the interface for event sequence collections of different sizes (from
100 to 500 with the step of 100) sampled from the MIMIC dataset. The
averaged sequence length was around 800. The expert users were then
asked to rate the readability of the views on a scale of 1 to 5 with 1
meaning most difficult to read (i.e., cannot find any patterns and cannot
be interpreted at all) and a score of 5 meaning very easy to read (i.e.,
the pattern is clearly shown and easily interpreted). The results of these
rating exercises are shown in Fig. 8 (mean value were reported).

In general, the cluster view was more highly rated when compared
to the sequence view. However, the ratings for both views showed
large drops when the data size reached 400. Follow-up discussions
provided some explanations for these scores. E1 commented that “over
300 sequences, there is no big difference of the results as both views
contain too much information and are harder to interpret.” When asked
for detailed reasons, both E1,2 mentioned the starting/ending treemaps
inside each event node contained too many small elements to be viewed
when the dataset is large.

The ratings for the sequence view were similar to the cluster view
when the data size was small, and similarly but earlier drop as the data
volume increased. E2 explained that “exploring a small number of
sequences is easy, as the visualization provides a good summary for

each stage segment. But when the list of individual event sequences
becomes long, it is very time-consuming to explore, especially when
the sequences have large number of events.” Both E1,2 found it is very
helpful to incorporate two views together for inspection. “The switch
mechanism between two views is very powerful,” E1 commented, “It
allows us to select only the clusters or paths of interest and inspect
details in sequence view” to manage the scale.

7 DISCUSSIONS

This section includes discussion regarding the generalizability and
limitations of the proposed approach.

Generalization. The progression analysis algorithm can be easily
generalized under the assumptions discussed in Section 4.1. Specifi-
cally, it is designed to analyze any event sequence dataset that follows a
progression process as outlined in the paper, or any continuous tempo-
ral dataset which can be discretized into such kinds of sequences. There
is no fundamental limitation on the sequence length, number of event
types, intervals of time between events, or application domain. The
visualization views are also designed based on the above assumptions
and are specifically designed to visualize the stage analysis results out-
put from our algorithm. However, the views are domain independent as
shown by the two case studies reported above.

Scalability. The major limitation of ET2 system is the scalability
of the proposed algorithm and visualization views. Our experiments
showed that both the algorithm and the primary visualization views can
handle a few hundreds of event sequences within a reasonable response
time and with a reasonable usability rating. To address this issue, a
query mechanism is included in our system, which is designed to help
users narrow down an analysis to focus on a subset of event sequences
following a similar progression path within a larger dataset.

Validation. Similar to most unsupervised learning algorithms, the
quality of the analysis results relies heavily on the design of the ob-
jective function and the quality of the optimization process. However,
the lack of ground truth measurements for stage progression analysis
makes the accuracy difficult to quantify. This paper, therefore, quan-
tifies the computational performance of the algorithm and presents
users’ subjective feedback. However, it is important in future work to
further assess the algorithm’s accuracy. To this end, we plan to collect
benchmark datasets with known ground-truths that would enable more
quantitative accuracy measurements.

8 CONCLUSION

This paper presented ET2, a visual analysis technique designed to
support interactive progression analysis of event sequence data. ET2

incorporates a novel progression analysis algorithm to identify semanti-
cally meaningful progression stages with variable time intervals. We
also proposed a novel multi-view visualization design along with a
set of rich interactions which allow users to explore and interpret the
extracted stages, their progression over time, and the underlying even
data. We evaluated the effectiveness of our approach in multiple ways:
(1) we applied ET2 to real-world data in multiple domains; (2) we ac-
curately identified the evolution through stages of a real-world dataset
with a known ground truth, and (3) we reported qualitative feedback
gathered through domain expert interviews. While these results are
promising, there are a number of important directions for future work.
We plan to evaluate the usability of our system via a formal user study.
We also plan to observe domain experts using our system in their daily
work to discover ways to improve the designs of our system, and to
better understand their analytical needs. Finally, we plan to explore
methods of incorporating users’ feedback into the progression analysis
algorithm with the aim of further improving the accuracy of the results.
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