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A Semantic-based Method for
Visualizing Large Image Collections
Xiao Xie, Xiwen Cai, Junpei Zhou, Nan Cao, Yingcai Wu

Abstract—Interactive visualization of large image collections is important and useful in many applications, such as personal album
management and user profiling on images. However, most prior studies focus on using low-level visual features of images, such as
texture and color histogram, to create visualizations without considering the more important semantic information embedded in images.
This paper proposes a novel visual analytic system to analyze images in a semantic-aware manner. The system mainly comprises two
components: a semantic information extractor and a visual layout generator. The semantic information extractor employs an image
captioning technique based on convolutional neural network (CNN) to produce descriptive captions for images, which can be
transformed into semantic keywords. The layout generator employs a novel co-embedding model to project images and the associated
semantic keywords to the same 2D space. Inspired by the galaxy metaphor, we further turn the projected 2D space to a galaxy
visualization of images, in which semantic keywords and images are visually encoded as stars and planets. Our system naturally
supports multi-scale visualization and navigation, in which users can immediately see a semantic overview of an image collection and
drill down for detailed inspection of a certain group of images. Users can iteratively refine the visual layout by integrating their domain
knowledge into the co-embedding process. Two task-based evaluations are conducted to demonstrate the effectiveness of our system.

Index Terms—Image visualization, semantic layout, CNN, image captioning.
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1 INTRODUCTION

W ITH the advancement of information technology, im-
ages are being created and stored daily on an un-
precedented scale. Analyses of large image collections play
important roles in a variety of applications, ranging from
personal album management, medicine, security, to remote
sensing [1]. However, the technologies and tools that em-
power users to explore and make sense of large image
collections are lagging. The recent years have witnessed
a growing interest in using visualization methods, such
as treemaps [2], node-link diagrams [3], and scatterplots
[4], for exploring large image collections. These methods
can provide users with a summary of image collections by
grouping images based on image similarities, which can be
acquired according to intrinsic features (i.e., image pixels
and metadata) or user-generated tags. Users are further
allowed to drill down to individual images interactively.
Visualization methods have been successfully applied in
different systems, such as PhotoMesa [2], PHOTOLAND [5],
and ImageHive [6], yet the approaches largely ignore the
semantic contents and relationships of objects embedded in
the images. The semantic of images can be comprehended as
language descriptions of image contents. Semantic informa-
tion can be crucial in many cases. For instance, the analysis
of the semantic content of images posted on social media
can reveal the scenes in photos more comprehensively. Such
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knowledge discloses user preferences, which is valuable in
identifying potential targets for advertisements.

Several approaches entail additional information, such
as manually produced tags and descriptive text, to ana-
lyze the semantic contents of images [7], [8]. However, the
information is scarce or even inaccessible in many cases.
For instance, personal photo albums and images posted in
tweets on Twitter may have few relevant tags and descrip-
tive words. Even if the text descriptions are provided, the
images might be inadequately depicted.

The limitation of the existing methods in high-level
semantic analysis motivates us to introduce a new method
for enabling the semantic-based interactive visualization
of large image collections. Nevertheless, semantic-based
image visualization is hindered by two major obstacles.
The first challenge is extracting the semantic information
from images effectively. Low-level information contents,
such as objects and their tags, identified from images us-
ing image classifications have been exploited to facilitate
the exploration and visualization of image collections [7],
[8]. Nevertheless, these methods cannot provide sufficient
contexts, such as the action and relation of the detected
objects, which are important for uncovering insights. The
second challenge is visualizing the images with their se-
mantic information. Recent visualizations apply similarity-
based methods to project images into 2D space, using visual
similarities to organize images. Visual similarities of images
are generally refered as the distance between visual features.
However, they cannot be directly applied to a semantic
based image analysis. Users need to further transform visual
appearances into concepts for analyzing semantic contents.
Comparatively, semantic similarities, which are based on the
distance between language descriptions of image contents,
help users cross the gap of conceptualization. Thus, creating
multi-scale, intuitive visualization and navigation in a large
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image collection, such that users can see global and local
semantic patterns is significant.

To address the first challenge, we employ an image
captioning technique [9] based on convolutional neural
network (CNN) [10] that generates reasonable sentence
descriptions for images, which can be used to extract se-
mantic information for our method. To address the second
challenge, we propose a model of co-embedding images
and the associated semantic keywords, with tailored visual
encodings and interactions. We transform the original de-
scriptive captions into semantic keywords to convey differ-
ent concepts inside the image collection. Galaxy metaphor
is employed to create intuitive multi-scale visualizations.
Images and associated semantic keywords are represented
as different roles of galaxies. This metaphor enables the
visualization with smooth transition between the different
granularities of images, which endows the visual analytic
system with depth and breadth.

The main contributions of this work are as follows:

o A problem characterization and a set of design consid-

erations for semantic-based image visualization.

e A novel model for co-embedding images and words
that preserves the complex relationships among images
and words.

e A semantic-based image visualization with a tailored
multi-scale representation and novel semantic-driven
user interactions.

2 RELATED WORKS

Our work is closely related to image collection visualiza-
tions as well as text visualizations. We discuss the related
researches in the following section.

2.1 Semantic Extraction of Images

Image content analysis is the core part of many areas,
such as content-based image retrieval. This process aims
to disclose underlying semantic content from the pixels of
digital images. In this section, we briefly introduce semantic
extraction techniques that are most closely related with
our work. More complete and in-depth analysis of these
techniques are available in [11], [12], [13], [14].

Object classification and detection are the most com-
mon techniques for semantic extraction. The rapid develop-
ment of CV techniques for different neural networks, such
as CNN [10] and SOM [15], has recently achieved high
accuracies in terms of object detection, thereby enabling
users to automatically extract accurate semantic informa-
tion from images. Semantic information, which is typically
represented as keywords, describes concepts embedded in
images. However, the results of these methods contain
only coarse semantic information. Thus, these approaches
encounter the problem of insufficient image semantics. To
address this issue, our work uses the neural image caption
(NICv2) model [9] to generate sentence descriptions from
images. The model evaluation typically shows that the
model could generate reasonable sentence descriptions that
approximate human-labeled ones on multiple metrics (i.e.,
BLEU-4, CIDER). Compared with object detection results,
sentence descriptions can express objects and their relations,
attributes, and activities. Thus, the sentence descriptions of
images can be regarded as high-level semantic information.

2.2 Visualization of Image Collection

Image visualizations have been studied over the past years
[1]. Previous research has introduced various methods, such
as scatterplots [4], tree-based methods [16], [17] and node-
link diagrams [3] to facilitate the image analysis. Liu et
al. [18] select representative images and generate a picture
collage to summarize the image collection. Crampes et al.
[19] employ a Hasse diagram to show the relationship
between social photos.

Although the preceding methods facilitate the under-
standing of images, such methods mainly focuse on utilizing
the visual features of images and contained limited semantic
information that depends highly on metadata. However,
such metadata may be missing or unreliable. Thus, the
absence of semantic information substantially hinders users
from understanding the images because of the difficulty in
interpreting visual features. To integrate semantic informa-
tion to enhance visualization, Yang et al. [8] use multidimen-
sional scaling (MDS) to project images and apply keywords
for annotations and searching. Worring and Koelma [20]
visualize images in a pivot table form, thereby supporting
the multivariate filtering of images over the user-supplied
information and keywords of images.

However, these methods use object detections which can
only extract coarse semantic information. To our knowl-
edge, the studies on image visualization along with high-
level semantic information are limited. Inspired by high-
dimensional data visualizations [21], [22], visual explo-
rations [23], [24], [25], and the importance of introducing
serendipity [26] in explorations, we use a projection-based
method for two reasons. First, scatterplots are intuitive and
easy to read. Second, scatterplots can provide a unified
co-embedding space for visualizing words, images, and
their similarities and thus clearly show the semantic con-
tent embedded in the images. Hence, we develop a novel
co-embedding model of images and words to produce a
semantic layout of images, thereby showing the latent se-
mantic topics. A multi-scale visual representation based on
the galaxy metaphor is introduced with the co-embedding
model to enable users to interactively visualize and navigate
the galaxy of words and images.

2.3 Visualization of Text

Text visualization has attracted considerable attention [27],
[28]. Novel text visualization methods, such as flow-
based [29], [30], [31], [32], Wordle-based [33], radial [34], and
tree-based [35], [36] have been introduced in recent years.
ThemeDelta [37] uses line-based visualization to illustrate
the convergence and divergence of keywords into different
topics. An approach that integrates radial and node-link
visualizations is introduced in TopicPanorama [34] to show
the full pictures of the relevant topics from multiple sources.

Projection-based methods have also been studied exten-
sively in text visualization [38], [39]. These methods use
different techniques, such as the bag-of-words model, to
represent documents as high-dimensional vectors that are
projected thereafter into a low-dimensional space using var-
ious dimension reduction techniques [40], [41]. Several new
projection-based methods, such as UTOPIAN [42] and Top-
icLens [43], have been proposed to leverage the advanced
manifold projection technique t-SNE [44] to project docu-
ments. In particular, these methods can support interactive
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visualizations that tightly integrate users into the refinement
of the visualization and models.

Although previous projection-based methods have de-
signed reasonable interactive refinement processes, they are
mainly designed for documents, without considering the
projection of both images and words. Certain co-embedding
techniques have been proposed for the projection of het-
erogeneous data. Canonical correlation analysis (CCA) [45]
and correspondence auto encoder [46] have been exten-
sively used in learning common representations of dif-
ferent datasets. Targeting at cross modal retrieval, these
techniques emphasize on modeling cross relations and pay
less attention to preserving the original similarities. Choo
et al. [47] suggest a space alignment method to closely
align the related elements from different datasets in the
common space. However, the structure of the image data is
discriminated from that of the word data, thereby hindering
the maintenance of cross-relations while enabling only small
deformation of the original space. Therefore, these methods
cannot be directly applied in our system. This work devel-
ops a novel two-step process of co-embedding images and
words. The flexibility of our co-embedding process enables
users to refine the projection interactively.

3 BACKGROUND AND SYSTEM OVERVIEW

This section first presents the common tasks of image
analyses. Thereafter, we introduce several design rationales
derived from the tasks. Lastly, we demonstrate the pipeline
and architecture of the system.

3.1 Tasks

Image analysis tasks vary with the application domain. Per-
sonal users may want to analyze images to find interesting
landscapes for sightseeing. By contrast, social analysts may
be more curious about the influence of image contents on
tweet propagation. Therefore, we started with a thorough
research of image analyses to investigate and extract com-
mon tasks in image analysis.

To collect an adequate number of papers, we used an
iterative method to review relevant literatures. We sought
related works (published in closely related venues such as
IEEE VAST, IEEE TVCG, and IEEE Transactions on Multi-
media) on IEEE Xplore, ACM Portal, and Google Scholar.
In particular, we collected relevant papers through three
steps. In Step 1, we searched for relevant papers with several
common keywords, such as “image visualization”, “image
analysis”, and “multimedia visualization”, and added these
papers to a paper list. In Step 2, we selected a paper from the
list and looked for other relevant papers from its references.
We then removed the selected paper and added newly
identified papers to the list. In Step 3, we iteratively repeated
Step 2 until no paper was left. In the end, we obtained 32
papers. For task abstraction, we first gathered tasks that
were clearly indicated in the papers to form an initial task
list. Then, for papers without clear indication, we identified
tasks from usage scenarios or case studies and updated
the task list. We developed a sufficient task list through
this process. We then identified common tasks from the list
based on task frequency.

We also conducted brainstorming sessions and held in-
terviews with 14 users (11 undergraduates and 3 graduates,
who are all CS majors) to confirm and extend the tasks. Each

interview lasted approximately 30 minutes. We summarized

four important tasks T1-T4 (T1-T3 from the literature review,

and T4 from user feedback) as follows.

Tl Summarize an Image Collection. Without clear guid-
ance, finding interesting patterns and contents in images
can be difficult [6], [18]. Thus, a simplified image content
summary is critical for providing users with access to an
image collection. When the content of an image collec-
tion is summarized, users can glance at the collection
and immediately identify interesting areas.

T2 Search for Target Images. Searching for target images
is an important task in image analyses [48]. It can be
applied to many analysis scenarios. In the medical field,
for example, searching for images of one or multiple
patients is commonly performed to facilitate patient
diagnosis [49].

T3 Navigate through Images. Navigation is an alternative
method for identifying interesting images [1]. Users
typically navigate the image collection when they can-
not clearly describe their target images. Navigation is
particularly suitable for open-minded exploration that
provides high flexibility in user interaction [50].

T4 Adjust Image Relations. Image relations significantly
impact T1-T3. For example, a system can depend on
image relations to generate summary views (T1). Fur-
thermore, such relations enable users to navigate from
related images to irrelative images (I3). Searches by
examples are also influenced because results are deter-
mined based on the relations between the results and
the examples (T2). Therefore, the interactive refinement
of image relations is necessary.

3.2 Design Rationales

We derive the following design rationales according to the

tasks in visually analyzing an image collection.

R1 Configurable Multi-level Visual Representation. A hi-
erarchical representation is highly necessary, particu-
larly for handling large-scale image data, for two rea-
sons. First, a multi-level overview of an image collection
allows users to immediately see the overall image dis-
tribution and quickly identify salient image groups (T1).
Second, the visual overview also enables users to drill
down to gain further insight (T3). Moreover, the repre-
sentation should be configurable to account for image
relation adjustment (T4) to support the integration of
domain knowledge into the visualization layout.

R2 Image Semantics Revelation. Revealing image seman-
tics in a system is important and useful in image summa-
rization and exploration (T1-T3). Compared with visual
features, such as color and texture, the semantic features
of images contain higher abstraction of information.
Moreover, these features can be more easily compre-
hended and accepted by users given that semantics and
its similarity (i.e., thesaurus) are naturally embedded
into human languages.

R3 Intuitive Metaphor. An intuitive visual metaphor can
significantly facilitate the navigation, visualization, and
understanding of an image collection (T1-T4). In a
semantic-based image analysis process, users analyze
and explore an image collection through image and
semantic relationships. In particular, relationships under
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Fig. 1. The system comprises two components: semantic information extractor and visual layout generator. The image captioning model (A), which
comprises CNN (A1) and LSTM (A2), translates the raw images to a set of descriptions (B). The descriptions are further transformed into associated
keywords (C) for the co-embedding. The co-embedding method (D) processes the image embeddings (in A1), the word embeddings (in A2), and the
keywords (in C) to obtain a projection of images and words (E). Based on the co-embedding result, the system produces an interactive visualization

of the large image collection (F).

consideration include image-image, image-semantic,
and semantic-semantic, which are challenging to cope
with, particularly for a large image collection. An appro-
priate metaphor can convey the complex information in
an intuitive and easy-to-understand manner.

R4 Flexible Image Query. The query for images is impor-
tant for analysts in their evaluation of their hypotheses
(T2). However, current methods are rigid because they
can only specify the contents of images. Furthermore,
these methods fail to provide a compositional query
that combines both keywords and sample images. Con-
sequently, a flexible image query mechanism, which
includes queries based on keywords, related images,
and composition, is required for image analyses.

3.3 System Overview

We develop a web-based system for the exploration of im-
ages. For the implementation, we use the Angular-FullStack
framework that integrates the MongoDB database, Angu-
lar]S frontend, and Node.js server. We employ an image cap-
tioning model on the Tensorflow platform and implement
our co-embedding model using Node.js C/C++ addon.
Our system comprises two components (Fig. 1), the
semantic information extractor and visual layout generator.
Our semantic information extractor can translate numerous
images into descriptions (Fig. 1(B)) based on the image-
captioning model (Fig. 1(A)). We further transform these
descriptions into semantic keywords associated with images
(Fig. 1(C)). Therefore, we can obtain words that refer to ob-
jects and other descriptive words (i.e., running and happy)
because the descriptions contain all types of words. To fully
utilize the abundant information derived from the semantic
information extractor, we develop a novel co-embedding
model (Fig. 1(D)) for our visual layout generator. Accept-
ing semantic keywords, image embeddings (blue part in
Fig. 1(Al)), and word embeddings (red part in Fig. 1(A2))
as input, the co-embedding model can produce a semantic
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layout of images (Fig. 1(E)) that can reveal valuable semantic
content. Furthermore, we employ a galaxy metaphor to de-
velop an interactive visualization to enhance the exploration
of images using the layout (Fig. 1(F)).

4 MODEL

This section first illustrates the architecture of the image-
captioning model and describes how we obtain relevant
data for co-embedding images and words. Thereafter, we
introduce a two-step method for the co-embedding model.
A forest-based method is developed to characterize the
semantic relation of words and images in multiple tree
structures based on the image captions.

4.1 Image Captioning Model

Our semantic information extractor (Fig. 1) is based on the
NIC captioning model [9]. The model takes raw images as
input to generate sentence descriptions from the images.
Two state-of-the-art machine learning architectures are in-
volved, namely, CNN for image processing (Fig. 1(A1)) and
LSTM for natural language processing (Fig. 1(A2)). CNNs
have been widely used in object detection and classification.
CNN:s can extract robust image features that can be fed into
other models through multiple neuron layers. LSTM is a
special form of recurrent reural network. The distinct archi-
tecture of LSTM has shown high capability in accomplishing
sequence tasks, such as machine translation and automatic
speech recognition.

We use the MSCOCO dataset [51] as the training dataset.
The MSCOCO dataset contains 82,783 images of training
and 40,504 images of validation, with each image having
five human-labeled captions. In short, the image captioning
model attempts to learn from the correct captions and trans-
late an image into a human-readable sentence. We denote
the parameters of the model with 6§, the input image with
I and the output sentence with S = (sg,...,Sn) where s;
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represents the ith word in the sentence. The matrix of all
word embeddings are denoted by W,. The objective of the
model can be formulated as:

f* = arg max Z log p(S|I; ) (1)
(1.9)

where p is estimated as follows

To = CNN(I) (2)
x; = Wes;, i€{0,...,N —1} (3)

Consequently, the loss function is the sum of the negative
log likelihood of predicting the correct word at each step.

N
L(I,8) == logpi(Si) ®)
iz

At each step, LSTM accepts an embedding vector of a word
(Wes;) as input (red vector in Fig. 1(A)) and produces
a probability distribution of words as the prediction of
the next word. Particularly, as illustrated in Fig. 1(A), the
image embedding I is inputted into LSTM only at the first
step. This step by step inference process enables the model
to create multiple sentences for an image with different
probabilities. For simplicity, we only selected the sentence
with the highest probability as the final caption. Although
word embeddings have the same vector size with image em-
beddings, they are generated by a different model, namely,
the skip-gram model [52]. Since word embeddings are im-
portant to our co-embedding process and image query, we
briefly introduce the skip-gram model.

Training of the Skip-gram Model. The skip-gram model
learns a high-quality vector form as the representation of
words. Given a word of a sentence, the model considers
the nearby words within distance n of the input word as
its neighborhood words. While training, the model tries to
predict the neighborhood words of the input word. This
training procedure ensures that the words with similar
context are close in the embedding space. This word rep-
resentation encodes the semantic patterns of words and is
considered a state-of-the-art technique for word embedding.

Characteristic of the Skip-gram Model. The word
embeddings from the skip-gram model has an important
property: it remains the linear algebraic structure of word
meanings. For example, the vector of “man” is the near-
est vector of the “King” - “Queen” + “woman” result,
and “swimming” is the nearest one of the “walking” -
“walked” + “swam” result. This means that word em-
beddings can maintain certain semantic relationships, such
as male-female, verb tense and even country-capital rela-
tionships between words. We sum up all the vectors in a
caption to represent the corresponding caption because of
this property. From this method, we can treat the captions
and words in the same way.

4.2 Forest-based Co-embedding of Images and Words

We demonstrate our model for co-embedding images and
associated semantic keywords. Given an image set with
n pictures Z = {I1,I5,...,I,}, we denote the caption of
image I; as C}. To obtain the associated semantic keywords,
we filter stop words and synonyms from the captions. Then,
we collect all the words in a set (J;_; Cj and denote this
word set with m words as W = (Wq, Wa, ..., W,,).

Based on literature reviews [53], in map or galaxy
metaphor based visualization, the distance between objects
can be used to represent the similarity. Therefore, we de-
termine that the co-embedding result should have two im-
portant properties to provide a meaningful semantic layout.
First, words should be close to related images, thereby
serving as a good annotation. Second, the images that share
similar semantic information should be close to each other
for the convenient comprehension of semantic content in
images. Thus, we employ a two-step co-embedding process.
A two-step method is selected over a one-step method be-
cause of two reasons. One is the difficulty in considering the
multiple relationships between images and images, words
and words, and images and words at the same time. In our
preliminary studies, we have developed a new cost function
for t-SNE to preserve these relationships. However, these
relationships, always interfering each other when they are
considered together, make it hard to tune the model. Dealing
with them separately in two steps makes it easier to generate
reasonable layouts. The other is the ease of controlling the
modification of the model for users. By processing the mul-
tiplex relationships separately, we can provide users with a
flexible interface through which the multiplex relationships
can be modified without disturbing each other. Hence, users
can fully leverage their knowledge on different relationships
and refine the layout through interactions.

We expect the final layout to preserve the semantic
relation of images. Thus, we deal with the relations between
images and images and the relations between images and
words, and then embed both images and words into a
semantic space. The first step is to obtain the local seman-
tic structures of images, which guarantees that words are
placed close to their related images. The second step is to
reconstruct images in the semantic space, which cluster the
images with similar semantic information. We begin with
describing the pre-processing of data and illustrate our co-
embedding method sequentially.

Pre-processing. Before the co-embedding process, we
use t-SNE to embed images and words respectively as
shown in Fig. 2(A). t-SNE is used because it generates
more reasonable dimensionality reduction results than the
other methods in our experiments. We denote the distance
between images as d(I;, I;;) and the distance between words
as d(W;, Wy,). Following previous image processing meth-
ods [44], we use Euclidean distance to compute d(1;, Ix).
For d(W;,W},), we use cosine distance because word2vec
[52] also applies cosine distance as the distance metrics. We
denote the 2D embedding of image [; as P;; and the 2D
embedding of word W; as Pﬁ, Then, we normalize the
2D embeddings of the images and words, respectively. For
simplicity, we use P to represent the 2D embedding space
of images and P* to represent that of words.

4.2.1 Obtaining Local Semantic Structures

In this step, we produce a preliminary co-embedding by
embedding words into P and obtain the local semantic
structures of images. A local semantic structure is a group
of images with similar visual features and semantics. First,
we construct a bi-directional bindings of images and words.
Then we embed words into P. Finally, we extract m trees
interpreted as the local semantic structures of images as
shown in Fig. 2(D), which are preserved for the next step.
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Fig. 2. (A) Project the images and words separately. (B) Assign the images to words according to their similarities. (C) Calculate the centroid of each
image collection as the position of the corresponding word. (D) Delete the outlier and recalculate the centroid until all images satisfy the threshold,
and then obtain the locally semantic structure. (E) Determine the relations between words according to the confidence. Here the confidence between
dog and walk is 0.75 while that of happy and walk is 0.25, which can be calculated by (14). (F) Reconstruct the image according to the relationship

between words using the locally semantic structure kept.

Binding words and images. We attempt to bind images
and words in a bi-directional manner. Through the binding
process, each word can find related images and each image
can find related words. This process can help us build the
relation between words and images.

As shown in Fig. 2(B), each image represented by a
pie is painted by one or more colors. The colors denote
which words are related to a certain image. For example,
the pie with three colors depict that this image share a
high similarity with both “dog” and “walk” and a lower
similarity with “happy”. Given this compositionality, we
define the similarity, Simi(W;, I,), between W; and I, as:

Simi(W;, I;) =1 — pnin, d(Wi, W) (6)

We define the word-image similarity because the caption
model occasionally mistakes an object for another object
similar in meaning (e.g. dogs and cats are sometimes mis-
taken for each other). With the similarity, users can adjust
the result of captioning through interaction when the result
of the caption model is unreliable. Therefore, for a specific
word W; , we define the set of its related images as Zyy,:

Tw, = {I; | I; € Z, Simi(W;, I;) > MinSimi}  (7)

where MinSimi is the threshold for the minimum simi-
larity, which is defaulted to 1.0, its maximum value. When
MinSimiis 1.0, Zy, only contains the image whose caption
contains W;. Similarly, for each image I;, we define the
related words W;, as:

Wi, = {W; | W; e W, I; € Ty, } ®)

Hence, we use Zy, and Wr to represent the relation between
images and words.

Embedding words. After detecting the relations between
images and words, we conduct a preliminary co-embedding
that preserve the relations. We expect each word to be
embedded in a place close to its related images. Embedding
word W; into P can be described as minimizing the sum of
the weighted distances of W; to the related images, which
can be expressed as:

Py, =argmin Y Simi(W;, I;)||P, — P||  (9)
P eTw,
j=EwW;

where P is any position in 2D space P. The problem-solving

process is similar to finding the geometric median of a set
of points (Fig. 2(C)), whose approximate solution can be
found with the gradient descent. However, it might lead
to the result that some of the images in Zyy, are far from
W;. Thus, we iteratively remove these images from Zyy,
and recalculate the position of W;, to find its optimized
position according to a user-defined threshold MaxDist,
which controls the maximal distance between word W; and
the images in Zyy,. For each iteration, we find the image I
which is furthermost from W; by:

Iy = arg max || Py, — Pr,||

Ij EIWi

(10)

If ||Pw, — If|| > MaxDist, we delete Iy from list Zyy,
and then recompute the position of W; according to (9).
As shown in Fig. 2(D), the blue pie, which is too far from
“happy”, and the yellow pie which far from the “dog”,
are deleted. We repeatedly delete the images in (10) until
|[Pw, — Pr;|| < MaxDist is satisfied. The deletion is a
bi-directional process, that is, when image Iy is deleted
from Zyy,, word W; is also deleted from Wy, . Through this
iteration, we simplify the complex relation between words
and images, to find the local semantic structures of images.

Extracting local semantic structures. We have simpli-
fied the relation between words and images. However,
preserving the relations between an image and multiple
related words can break visually similar images into differ-
ent groups, thereby discarding the information from visual
features. To preserve the information provided by visual
features, we need to further find the most related word for
each image to detect the local semantic structures of the
images (Fig. 2(D)). To illustrate, we construct a pair of values
(Si, D;) for each word W; in Wy, where S; = Simi(W5, I;)
and D; = ||W; — I;||. After sorting, word W; ranks ahead
word Wy, must satisfy S; < Si. If S; = Sy holds, D; < Dy,
should also hold. If Wy, is empty, I; has no parent nodes.
Otherwise, the first word in W, is set as the parent node of
;. In this manner, we can obtain the local semantic structure
for each word, which contains semantically and visually
similar images, and represent the local semantic structures
in a forest form for the next step.

4.2.2 Reconstruct Images in Semantic Space

In this step, we attempt to reconstruct the preliminary
co-embedding based on the relation between words. The
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relation is defined by words’ co-occurrence relationships.
We use the co-occurrence because it is intuitive for users
and has been extensively applied [52] to reveal semantic
relations. As shown in Fig. 2(E), we determine the semantic
relation in a forest structure according to R1. We didn’t
use existing ontologies because their structures remain static
and unchangeable. Moreover, multiple ontologies may con-
tradict one another on certain aspects, as they are created
in different contexts. Then, we reconstruct the position of
words, where the child word’s position is determined by its
parent words. The word that does not have parent node just
remain its original position as shown in Fig. 2(A).

Reconstructing images by words. We have detected the
local semantic structures in images. Thus, we can utilize the
relation between words to reconstruct the images according
to their parent word. We denote the 2D positions of W; in P*
as Py, On the basis of the relation in Wpace and the local
semantic structures in the forest form, we can reconstruct
the positions of the images as:

PE = Pg — PCons(E) + Péons(E) (11)

where E' is an element, which can be an image or a word,
and Cons(E) is the constructor of the element E. The
constructor is the parent node of E in our forest. Typically,
the parent node of an image is the word most related to
it. According to the previous step, some images may not
have any parent node. We move these images into the
unreconstructed list. Since each word is a root in the forest,
we initially set the constructor of each word as itself. Simply
reconstructing the co-embedding based on the current forest
would result in a image cluster separated by different key-
words as constructors. As illustrated in Fig. 2(E), there is a
image cluster whose captions contain the word “dog”. How-
ever, some of these images would choose “walk” as their
parent, and thus the image cluster associated with “dog”
is departed by “walk”. Therefore, we need to introduce a
process that reconstruct the word using other words.

Reconstructing words by words. In this mechanism,
a word can also be reconstructed by the other words to
control the reconstruction of images. First, we calculate the
frequency of a word by:

Freq(Ws) = [Tw, (12)

The co-occurrence frequency of two words is expressed as:
Freq(W;, W) = Freq(W;,W;) = |Zw, N Tw;,| (13)

We define the confidence between each pair of words as
matrix CF where CF;; is the confidence of word W; can
be generated by another word W:

Freq(W;, W;)
Freq(W;)
We allow the user to set a threshold, which is denoted
as MinConf, to control the minimal confidence that a
word can be generated by another word. According to the

confidence, we can obtain a constructor list Wy, (a list of
potential parent nodes) of W;. If W; is in Wyy,, then:

CF;; > maxz(CFj;, MinConf)

CF;; = 14)

(15)

For W;, to determine its parent node, we sort the words in
W, according to their confidences (CF;;) and to their 2D
distance from W;. Then, we select the word that ranks first

in Wy, after sorting as the parent node of W;. To illustrate,
we construct a pair of values (CFj;, ||W; — W;||) for each
word W; in Wyy,. We ensure the word W; ranks ahead Wy,
if CF]‘Z‘ < CJF]']C holds, or ||W] — WlH < ||W] — Wk” is
true when CFj; = CFj;, holds. If Wy, is empty, W; has no
parent node and it is its own constructor. Otherwise, we can
treat the first member W; in Wy, as the parent of W}, and
the position of W; is determined by the position of .

As shown in Fig. 2(E), “dog” is determined to be the
parent of “walk”. The confidence of “dog” to “walk” is
0.75, whereas that of “happy” to “walk” is 0.25. In this
figure, “happy” does not have a parent node, so in Fig. 2(F),
“happy” is in its original position as shown in Fig. 2(A),
whereas the position of “walk” is determined by “dog”.
Word “dog” remains its position and “walk” remains its
relative position to that of “dog”. The positions of images
are determined by the locally semantic structure obtained
in the first step. Since (13), (14), and (15) guarantee that
Freq(W;) < Freq(Cons(W;)), there will not be any cyclic
constructors. Then we can reconstruct those words whose
constructors exist iteratively using (11). After reconstructing
these words, we can reconstruct the images according to (11)
as well. Finally, we provide a co-embedding that preserves
the semantic relation globally and the visual relation locally.

5 VISUAL DESIGN

In this section, we introduce the visual design and interac-
tions of our system (Fig.3). As discussed in Section 4.2, the
images are organized globally by the words, showing the
semantic similarity, and distributed locally with regard to
their visual similarity. However, an intuitive visual design
and useful interactions are required to support efficient anal-
ysis of the images. Hence, we propose a novel visualization
to provide an interactive image analysis process.

As illustrated in Fig. 3, our visualization contains several
useful components. The galaxy view (Fig. 3(A)) adopts a
galaxy metaphor to allow the multi-scale analysis of im-
ages. Users can zoom into the detail level of a semantic
group of images to examine local patterns. Flexible query
of images is supported in the side panel (Fig. 3(B)), where
users can select images and words to be included and ex-
cluded(Fig. 3(E)). When users locate to an interesting word
(Fig. 3(D)), its related images are displayed in a focus-plus-
context manner (Fig. 3(H)). A browser (Fig. 3(C)) is provided
for users to inspect the original image along with its caption.

5.1 Galaxy view

The galaxy view employs a galaxy metaphor to show the
semantic summarization and semantic structure of an im-
age collection (R1, R2). Organizing images according to
their similarities is important for understanding the image
collection [54]. Considering the projection-based method as
an intuitive and concise choice for showing the similarities
visually, we propose using scatterplots for the visualization.
Scatter plots are regarded as basic-level visualization tools
and efficient at presenting two quantitative value attributes
for viewing distributions within the data. Hence, we use
scatterplots to visualize both the images and words.
Galaxy metaphor. In section 3.2, we discussed the ne-
cessity of using an intuitive metaphor for visualization.
We decide to employ the galaxy metaphor (R3) for several
reasons. First, a galaxy is assembled by numerous stars
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The word constructors are shown in F and the image constructors are shown in (G). (H) is a local area of the galaxy view. (l), (J), and (K) shows

different statuses of the same local area under different interactions.
and massive materials. The vastness of galaxies is appro-
priate for representing massive images. Second, the galaxy
metaphor entails an inherent hierarchical structure (galaxy,
star, planet), which can provide users with an intuitive
interface to navigate and analyze the image collection at
different levels of details (R1). Finally, the relation between
stars and planets is also appropriate for representing the
wordimage relation, given that different images share the
same concept (word). Furthermore, using this metaphor
prioritizes words (stars) over images (planets) in the visual-
ization, and this approach encourages users to first explore
the image collection through word inspection.

As shown in Fig. 3(A), we refer to each cluster as a
galaxy and use color to encode these galaxies. Specifically,
we refer to words as stars and images as planets in galaxies.
To mitigate the overlap issue of visualizing original images,
this design emphasizes words to utilize their abstractness
to assist users in rapidly inspecting a large image data set.
To derive the galaxies, we apply a density-based clustering
method to cluster the images and words based on their
2D embeddings. We arrange images and words globally
according to their semantic similarities. Thus, each galaxy
can represent a set of semantically similar images (R2).

By identifying stars (words) that fall in different galaxies,
users can quickly notice the semantic content of the image
collection. Furthermore, users can detect semantically near
in addition to semantically apart galaxies from estimating
the distance on scatterplots. This process can help users
understand the semantic structure in images, which is sig-
nificant for further explorations.

5.2

Multiple interactions are provided as follows.

Interaction

Multi-scale Exploration. Due to the limited visual space,
the visualization does not show all images to users at a time.
To strengthen the exploration of the image collection, we
employ a multi-level analysis process (R1). The root words
of the forest structure (Section 4.2.2), considered as the
most dominant concepts in the image dataset, are presented
at a coarser zoom level. Moreover, users can drill down
to a specific galaxy to view more detailed keywords. As
discussed, we are able to group images that share similar se-
mantic content (R2). For example, we place multiple images
containing different species of animals together because
they both share a concept, i.e., animals. However, detailed
information of animals, including species distributions and
their relations, are obscure at the galaxy level. To show de-
tailed information, we allow users to zoom into the second
visualization level, which is the solar level. In the solar level,
each image is visualized as a planet (point). In addition,
related planets (images) are shown in a focus-plus-context
manner by hovering on a star (word) (Fig. 3(H)). Planets
are placed radially around the star, which constitutes a
typical solar system. Users can hover on a planet to show
its caption, thereby verifying the correctness of the layout.
The original image with high resolution (Fig. 3(C)) is shown
by clicking the planet. For simplicity, we show only several
related images (up to 10 images) by default. Users can click
on a switch button (Fig. 3(H)) to see the rest of the images.

Layout Refinement. To help users efficiently analyze
the images, we design a set of interactions to involve their
domain knowledge in refining our projection layout (R1).
When users click on an image point (Fig. 3(J)), a list of
related words are shown as candidates (Fig. 3(G)). Only
one of these words is the constructor of the image, which is
highlighted by a black spot. As mentioned in Section 4.2, the
position of an image is highly determined by its constructor.
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“suitcase”.

We typically select the most similar and the nearest one as
the constructor. Depending on the task domains, users can
click on other related words to choose a word that is more
accurately related to the image to refine the layout.

Users can also modify the constructor of words. A con-
structor is created for each word to reorganize the layout
of the words. As discussed in Section 4.2, this process can
help prevent the separation of similar images during co-
embedding. Specifically, the constructor can be interpreted
as the parent word. Thus, we organize the words in a
tree structure based on the semantic content of images
(R2). However, the constructor is determined by the image
captions, which are not always reliable for all domains.
Therefore, we allow users to redefine the constructors of
words. A constructor list of words (Fig. 3(F)) is displayed by
clicking the corresponding star in the galaxy view (Fig. 3(I)).
Users can manipulate the construction relations between
words by reconfiguring the constructor. For example, when
users remove word “train” from the constructor of word
“river”, the related images of word “river” are removed
from the tree of word “train”. Then these related images and
word “river” are reorganized only according to semantic
similarity between word “river” and other words. Hence,
as we can see in Fig. 3, these images and word “river” are
positioned to the adjacent area of word “lake” (Fig. 3(K)).

Semantic Queries. In the side panel (Fig. 3(E)), users can
add related keywords and images for image query. To select
the related images, users can click images in the galaxy view
or the browser. Users can switch the query status for each
item, either plus or minus in Fig. 3(E1, E2). The query result
of images is shown in the browser. Supporting this kind of
flexible query mechanism could significantly help users in
understanding images.

In our system, the flexible query of images (R4) can be
represented as an expression containing both images and
words. For example, the expression “dog”+“cat”+"image of
the beach” can represent a query of images that contain a
dog and a cat in a scene similar to the image of the beach.
Further, specifying an expression “image of flower”-“red” can
represent finding images of flowers except for red flowers.
We achieve flexible queries by utilizing the linear property
of word embeddings. In the queries, each image is consid-
ered a document. We clean up the stop words and sum up
the word embeddings to acquire the document embedding.
Adding embeddings to or subtracting embeddings from the
expression can obtain the vector representation of the query
and search images that have captions similar to this query.

6 USAGE SCENARIO

We present a scenario based on exploring a personal album.
Bob, a fan of digital devices, is keen on capturing his life
with his camera. We describe how he uses our system to
manage his photos. The operations involved in this task are
common for understanding general images.

Bob has taken photos for years. Consequently, he cannot
clearly review what he has recorded. To have an intuitive
summary, he goes to the galaxy view and soon recognizes
that the overview of his photo collection is composed of
several galaxies. In his observation of the stars inside the
galaxies, he notices that these galaxies represent different
types of photos and subjectively abstracts them as record-
ings of sports, person, wild animals, and pets(Fig. 4(A)).
Up to now, Bob has understood the major semantic content
embedded in the photos.

Bob is interested in photos of pets; thus, he drills down
to the corresponding galaxy. At the solar level, as illustrated
in Fig. 4(B), the photos include several kinds of pets, such
as dogs, cats, and birds. Zooming into the layout, Bob finds
additional descriptive words in addition to nouns, such as
“swimming” (placed near “duck”) and “catch” (placed near
“dog”). On the basis of the positions of these stars, he spec-
ulates that they can represent the different activities of the
pets. By hovering on “catch”, Bob discovers a set of photos
depicting specific activities, such as a dog catching a frisbee,
and his speculation is therefore supported. Although the po-
sitions of most of the stars can be comprehended, a specific
star called “suitcase” catches his attention because, accord-
ing to common sense, the word is not semantically similar to
pets. By clicking on star “suitcase”, Bob finds that star “suit-
case” is specified as a child of star “cat”. Thus, he realizes
that “cat” and “suitcase” are tightly correlated in his photos.
However, Bob is confused by this pattern. He decides to
further investigate the correlation. He continues inspecting
the photos related to “suitcase” to explore the reason for its
position. After recognizing the photos (Fig. 4(C)), he verifies
the association: the photos share a common scene of a cat
lying in a suitcase. Bob soon understands that cats com-
monly lay in suitcases. After discovering this correlation,
Bob tries to collect these photos. Therefore, he utilizes the
function of flexible queries to acquire fine-grained photos.
In particular, he conducts in-depth queries in the left panel,
such as “cat”+“in”+"suitcase” and “cat”+“top”+“suitcase”,
and successfully collects photos of cats in different motions.

Although this pattern is reasonable for Bob, he prefers
to reorganize the photos of “suitcase” to the adjacent place
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of semantically similar words. By clicking on the removing
icon of word “cat” he removes “cat” from constructor of
“suitcase” and specifies word “suitcase” itself as a root
word. This time, “suitcase” and related photos will be laid
out only according to the semantic similarity. Therefore, Bob
successfully reorganizes the photos of “suitcase” and places
them in a new group containing “blender” and “purse”.

7 MODEL EVALUATION

In this section, we first present a layout comparsion to
introduce the characteristics of the semantic based image
layout. Later, we discuss the effect of different parameters
of the co-embedding model on the image layout. Finally, we
clarify the computing times of the co-embedding model.

7.1 Layout Comparison

We use an example to demonstrate the effectiveness of our
co-embedding method compared with previous methods.
For the comparison, we create two image layouts generated
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by the t-SNE (Fig. 5(A1)) and our co-embedding method
(Fig. 5(B1)), respectively. The words are positioned based on
the method discussed in section 4.2.1.

We first compare the projection overview. In Fig. 5(Al),
the visually similar images are grouped together. As we can
see, images of different animals, such as elephants, zebras,
and giraffes are grouped into different clusters. However,
the overview of the images still has some problems. In
Fig. 5(A1), dogs and cats are positioned far away from other
animals, thus breaking the semantic relation of images about
animals. We speculate that because dogs and cats are pets
that often appear in indoor scenes, their images are not so
similar with those containing other animals, as the back-
grounds are significantly different. Another example has to
do with the modes of transportation. Due to the different
visual appearances, various modes of transportation, such
as a car, a motorcycle, and a boat, are located separately in
the space. Hence, utilizing only the visual features cannot re-
veal the semantic relations embedded in images. As shown
in Fig. 5(B1), our co-embedding method produces a more
reasonable layout of images. Images are also grouped into
different clusters, helping users identify their proper distri-
bution. Further, the semantically similar images, such as the
animals, modes of transportation, and indoor elements, are
successfully placed together. Obviously, our co-embedding
method can attain a better semantic layout of images.

Thereafter, we select an area about “motorcycle” in the
overviews to compare the detail layout. In Fig. 5(A2), the
images are distributed strictly according to their visual
appearances. This property can assist users in identifying
similar images. This property is also preserved in our pro-
jection (Fig. 5(B2)). Therefore, this verifies the capability of
our co-embedding method of integrating the advantages of
both the visual features and the semantic information.

7.2 Parameter Anlysis

Several parameters are involved in the co-embedding pro-
cess. The parameter MiniSimi controls the sensitivity of
collecting semantically similar images of a word. For the
high values of MiniSimi, a few related images are detected
for each word. Thus, the position of each word in the
image space is determined by the limited related images
that produce a dense layout of images (see Fig 6(Al)).
A low MiniSimi increases the number of related images
and ensures the completeness. However, according to the

1077-2626 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2018.2835485, IEEE

Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XX 2018 11

embedding method, it is difficult to find a position that is
close to every related image. Therefore, such a difficulty
would cause a loose layout of images (see Fig 6(A2)).

MaxDist controls the affected area of each word. We
use red points to represent the related images of the word
“plane” (see Fig 6(B1, B2)). The affected area of the word
“plane” is expanded by increasing the value of MaxDist.
However, the affected areas of different words would have
a significant overlap with high values of the parameter
MaxDist, thereby causing blurred margins among the im-
ages of different words.

MinConf controls the difficulty of detecting the co-
occurrence relationships of concepts in the image data set.
The high values of MinConf enable the detection of the
strong correlations only, whereas the low values of MinConf
would also preserve weak co-occurrence relationships. For
the image layouts, this condition is reflected as increasing
the values of MinConf that would reduce the number of im-
age clusters (see Fig 6(C1, C2)) by merging several clusters.

In our system, we set MiniSimi to 0.8 to increase the
accuracy of related images for each word. MaxDist is set to
0.2 to clarify the affected area of different words, thereby
increasing interpretability. We believe that, by default, users
are initially interested only in strong relationships between
concepts, and thus, we set MinConf to 0.8.

7.3 Time Performance Analysis

We focus on analyzing the computing times of our co-
embedding method because the image captioning model
can be run in advance. We specify the number of images
as n and the number of words as m.

In the first step, the time complexity of binding words
and images is O(mn) because each caption contains limited
words. The time complexity of embedding words is difficult
to estimate. Finding geometric median can be nearly linear,
but the number of the related images of each word highly
depends on the data set and parameters. Assigning a large
value to MiniSimi could decrease the size of the related
images of each word and accelerate the embedding process.
A large value of MaxDist can also reduce computing time
by decreasing the number of iterations. Hence, the worst
situation of embedding words would be near O(mnkt) by
specifying the maximum number of related images as k and
the maximum iteration number as t. Extracting the local
semantic structures comprises the sorting related words for
each image. Thus, the complexity is below O(mlog(m)n).

In the second step, the time complexity of reconstructing
images by words is O(n). The time complexity of recon-
structing words by words is also O(n) because the co-
occurrence of any two words can be computed by iterating
over the captions of images. Overall, the time-consuming
component of our co-embedding method is the first step.

Most of the time in our implementation was spent on
the pre-processing for the co-embedding of 10000 images
and approximately 600 keywords. MiniSimi was set to 0.8
and the complete co-embedding procedure took less than 3
minutes. However, a small value of MiniSimi (0.2) would
increase the time cost to approximately 35 minutes.

8 EXPERIMENTS

In this section, we report on two experiments conducted to
test the effectiveness of our system. The first quantitatively

evaluates the semantic-based image layout of our method.
The second experiment evaluates the different aspects of our
system, including the usefulness of the various aforemen-
tioned interactions on image analysis.

We used the MS COCO dataset [51] for the experiments.
For the quantitative studies, we needed a ground truth of
image information to evaluate user performance. Labeling
a sizeable amount of images is a labor-intensive task; there-
fore, we decided to use machine learning image datasets
with provided ground truths. However, many machine
learning datasets collect only simple images (i.e., close-up
of certain objects), which do not match real image analyses.
Thus, we chose MS COCO from among different machine
learning datasets because it was created by collecting com-
plex images that depict everyday scenes.

We conducted our experiments on a desktop computer
(with a 27" screen and 1920 x 1080px resolution).

8.1 Experiment 1: Study of Image Layouts

To our knowledge, we are the first to develop a semantic
image layout. The visual-based layout was used as the
baseline, then this visual-based layout was compared with
the semantic-based layout. We used t-SNE, a state-of-the-art
image projection technique, to acquire the baseline. Words
were positioned according to the method discussed in Sec-
tion 4.2.1. Thus, the baseline layout was consistent with
previous methods [8]. For testing, we designed a system
prototype by removing the interactions of layout refinement
and semantic queries. Users were allowed to use only zoom-
ing and basic interactions with the inspected images. A total
of 12 volunteers (7 males and 5 females) participated in this
study. Participants were either graduate or undergraduate
students who are CS majors, and all reported normal or
correct-to-normal vision.

In Section 3.1, we have described four common tasks in
image analysis . Among these tasks, the performance of T1
and T3 is related to image layout, whereas those of T2 and
T4 are determined by query algorithms and interactive re-
finements, respectively. The performance of T3 is difficult to
measure, and thus, we designed the task in this experiment
mainly based on T1. This task entails exploring a dataset
and identifying salient object categories. We provided each
participant with a set of predefined object categories and
asked them to select salient categories from the set. Each
participant completed this task with two image layouts
separately. The accuracy of the task regarding one image
layout is measured as the number of correct selections.

In this experiment, we adopted a within-subject de-
sign to compare two image layouts. The dataset cannot
be repeated for each participant, and thus, we need two
separate datasets. To balance the effects of the dataset and
the sequence, we equally sampled all the conditions of the
combination of dataset and layout, along with the sequence.
We derived four conditions for each participant by denoting
two image datasets as Dy and Do and two image layouts as
Ly and Lg. These conditions are as follows: [D; Ly, Do Lg],
[DiLs,DoLv], [DoLy,DiLs] and [DoLs,DrLy]. We
then divided the participants into four groups and assigned
a condition to each group.

8.1.1 Procedure

We first introduced the characteristics of the two image
layouts and the definition of all image categories to the
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TABLE 1 TABLE 2
Ground Truth Tasks
Categories of Each Partition T1. Summarize the image collection. R2
Indoor Scene Outdoor Scene T2. Summarize the image cluster containing animals. R2
Sports, Outdoor Obj, An- T3. Find an image containing the cat. R4

Food, Animal, Indoor Obj,

imal, Vehicle, Person and
Person and Accessory

Accessory

participants. They were then asked to complete the task
on a training dataset, which is a small set of test images
that contained two image categories and approximately
800 images. The participants were trained with both the
semantic-based and visual-based image layouts. During the
training process, we instructed the participants to explore
images and indicate their misunderstandings. Lastly, for
image exploration under the condition of our specifying
task, we conducted a short interview with each participant
regarding the image layout they preferred. The identifi-
cation result and costing time were collected for further
analysis. The duration of the experiment for each participant
was approximately 30 minutes.

Average Accuracy Average Time Cost

100% = T 250
80% 200 I
60% 150 =
40% 100
20% 50
0% 0

Visual Semantic Visual Semantic

Fig. 7. Experiemnt 1: Average accuracy and time cost and their 95%
confidence intervals.

8.1.2 Result

The average accuracy and costing time are presented in
Fig. 7. We use Student’s t test to examine the result. The
left panel in Fig. 7 indicates that no significant difference
(t(11) = 0.432, p = 0.337) exists between accuracies. In the
right panel, however, a significant difference (£(11) = 2.335,
p = 0.020) is observed between the average costing time
for the two image layouts. The result is consistent with our
observations. We did not establish a time limit for the task,
and thus, most participants chose to thoroughly explore
images until they were sure of their answers. Therefore, they
achieved highly accurate results. Nevertheless, the finishing
time for the two image layouts differed. During the exper-
iment, we observed that participants were likely to exhibit
more interactions with the inspected images when using the
visual-based image layout. In particular, five participants
noted that realizing and utilizing semantic similarities are
easier for them. We speculate that the semantic similarity
can be more efficiently used as it is more close to human
while the visual similarity is more close to machine.

We found additional reasons for the outcomes from
the interviews. The characteristic of clustering semantically
similar images and labels could help them reduce summa-
rization time given that they were familiar with the concept
of semantics and were certain of the content of each cluster
without considerable interactions of inspecting images. By
contrast, the concept of visually similar images will be fuzzy
to the participants. Whether two images should be visually
similar and the degree of visual similarity remain unclear to
the participants, thereby causing them to continually inspect
images to confirm their content.

T4. Find an image containing both the cat and the dog. | R4
T5. Find word “ocean”. Check the related images and | R1
find an image containing the seagull. Revise the
constructor of this image.

T6. Find word “ear”. Check the related images R1
and find what they are about. Revise the constructor
of “ear” to reorganize these images.

8.2 Experiment 2: Study of System Usability

In this experiment, we tested the effectiveness of our system
on image analysis. We randomly sampled 10000 images
from the MSCOCO as testing images. To ensure that the
users would be engaged in the scenario of visual analysis of
images, we designed 6 tasks (Table. 2) on the basis of our
design rationales. These tasks were designed to instruct the
users to fully exploit different functions of our system. We
also developed a questionnaire (Table. 3) based on the tasks.
The questionnaire is a seven-point Likert scale (1 - strongly
disagree, 7 - strongly agree). With the tasks, we expected to
collect comprehensive feedbacks and suggestions of users.
A total of 15 volunteers (10 males and 5 females, with an
average age of 21.2 years) participated in this study.

8.2.1 Procedure

At the beginning of the experiment, we briefly introduced
our system to each participant. Then, the participants were
asked to complete the tasks in Table. 2. After finishing all the
tasks, the participants were given a chance to freely explore
the whole image dataset. Then, they were asked to fill out
the questionnaire (Table. 3) to evaluate our system. Finally,
we conducted an interview with each participant to collect
some feedback on our system. The typical time for the user
study, including the questionnaire and the interview, was
approximately 40 minutes per participant.

8.2.2 Result

The participants were able to easily complete the tasks.
Given that most of these tasks are either open questions
or with only one solution, we did not record the completion
time and the accuracy of each task. Here we focus on the
questionnaire ratings and user feedbacks.

The ratings of questionnaires are reported in Fig. 8.
Overall, the users agreed (gave an average rating approx-
imate to 6) that our system is easy to learn and to use,
the layout is reasonable and helpful, and the design is
intuitive and aesthetically pleasing. Among all the ratings,
the variances of Q2 and Q5 are comparatively large. This
can be attributed to the fact that two users gave low marks
to these two questions respectively. One user gave 3 points
on Q2. His remark was that the search engine made him
confused, and it would be better if the system could provide
more instructions. The other user gave 4 points on Q5. His
comment was “it would be better to use lines to show the
construction relationship.”

8.3 User Feedback
We summarize the user feedback below.
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TABLE 3
Questionnaire

Q1 Our system is easy to learn

Q2 | Our system is easy to use

Q3 | The overview of the image collection is reasonable
Q4 | The overview of the image is useful

Q5 | The local structures of the images are reasonable
Q6 | The local structures of the images are helpful.

Q7 | The result of the semantic queries is reasonable.
Q8 | The result of the semantic queries is useful.

Q9 | The visual design is intuitive

The visual design is aesthetic.

Ratings
I I I I I I I I I I

oRNWRUON

Ql Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Fig. 8. Experiment 2: Average ratings and 95% confidence intervals.

Semantic Layout. The users were impressed by the
semantic layout of images. They thought that the layout is
useful for them to explore the massive images. But one of
the users mentioned that several images were positioned by
mistake. Other users provided some suggestions for the co-
embedding. One of the users with research experience in vi-
sualization suggested that the co-embedding process could
be extended to a progressive manner. He also mentioned
that it would be more helpful if users can specify words
of interest in the co-embedding. Further, by progressively
adding or deleting words from the co-embedding, the co-
embedding result can be more transparent for users to
comprehend the semantic information in images.

Visual Design. Most of the users agreed that our visual
design could intuitively convey the semantic information.
Given that we use the scatterplot as our visualization, they
found it easy for them to recognize the images and their
similarities. However, one user indicated that the estimation
of image similarities was not so easy, as the visualization can
be explored in different scales, which sometimes hampered
his estimation of the distances. Another user mentioned that
it would be more useful if the images can be visualized
temporally for the task of image management. In addition,
three users made comments about the color. One of them
thought the color is appropriate, which provided her an
impression of the starry sky. Two of them thought the
color is a little confusing as it did not well distinguish
between different semantic clusters. Due to the limitation of
our clustering method, however, some semantically similar
images may be assigned to different groups. Moreover, one
user thought that it was not efficient to show all the text
in the same size. He hoped that important words could be
highlighted by a larger text to attract his attention.

Semantic Summarization. Although we selected the
most representative words for the visualization, three of our
users commented that there were still too many words in
the overview, imposing them to a large scale of information
that they could not quickly comprehend. One of them sug-
gested that adding simple sketches could help her efficiently
understand the semantic content. Two of them suggested
conducting a summarization of similar words to produce a
more high-level concept, such as animals, food, and sports.
They shared that only showing these highly-summarized

words in the overview could facilitate their analysis.

8.4 Discussion

Significance. With the rapid development of deep learning,
an increasing amount of semantic content embedded in
images can be conveyed in a readable manner. Due to the
generality and abstractness of semantics, visualizing images
with the aid of semantic information is a probable choice
for analysis. In this work, we present our initial attempt
to utilize high-level semantic information to produce a co-
embedding of images and words. The evaluation demon-
strates the effectiveness of combining our co-embedding
model and an interactive visualization for analyzing image
content. Compared with traditional methods, our method
has the capability of maintaining both the semantic and
visual similarities of the images, thus providing users with
a new approach for exploring complex image contents. The
semantic layout of images allows users to detect semanti-
cally similar images, that share an identical concept. Further,
our co-embedding can characterize the semantic relation in
a specific image collection based on the semantic informa-
tion. The flexibility in our co-embedding also enables users
to refine the image layout iteratively, thereby providing
users with an interface, with which they can integrate their
domain knowledge in the analysis.

Applicability. From revealing the semantic information
of images, our method can be applied to facilitate the
utilization of images in further analyses. The semantic infor-
mation of images can be highly effective in many cases. For
example, companies would like to collect and analyze user
feedback on the products. However, except for the text, user
feedback also contains rich images, which often show the
problem product. These images are beneficial complements
to the feedback analysis. Our method can be integrated
into current analysis tools to conduct analyses involving the
information contained in texts and images, such as linking
the sentiment analysis of text with user-provided images to
discover users’ primary concern of the products.

Limitations. Our method has three limitations. The first
limitation is the performance of the captioning model. Due
to the non-optimized code and the use of a low-end PC
(Tesla K20), extracting captions from 10,000 images con-
sumes 11 hours. Using advanced GPUs and optimizing the
code can reduce the time cost into less than 1 hour. More-
over, the quality of the captions is highlighted. Although
the model is a state-of-the-art captioning technique, it may
not always produce reasonable descriptions. Furthermore,
the captioning model is currently incapable of generating
highly specific descriptions of images, thereby limiting the
richness of the semantic information. However, we believe
that the fast-developing deep learning models can produce
increasingly useful and concrete semantic information in
the future. Therefore, our co-embedding method can be
integrated with the future novel model coherently and un-
cover more insights from the images. The second limitation
comes from our co-embedding model. As shown in Section
4.2, our co-embedding introduces several parameters. These
parameters, however, highly depend on manual adjustment
to attain a reasonable layout. At present, we determine the
parameters by iterative experiments. In the future, we plan
to design a robust method to determine the parameters. The
design of co-embedding also posts challenges to streaming
applications. This is because the t-SNE projection, which we
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use in preprocessing, does not support incremental updates.
Substituting some incremental projections for t-SNE may
resolve the problem. However, this would involve a trade-
off between layout accuracy and speed. The third limitation
is the removal of the sentence structures of captions. As
illustrated in Fig.1, we derived captions from images and
replaced them with keywords. Although we could perform
a concept-level analysis by combining object labels and
other descriptive words, the sentence structure has a high
potential for facilitating image analysis.

9 CONCLUSION

This paper introduces a visual analytic system for analyzing
large image collections supported with the semantic infor-
mation of images. We apply an image captioning model to
automatically extract descriptive captions from images. A
novel co-embedding model is introduced to project images
and the associated semantic keywords to the same 2D
space for a semantic-based exploration. The system employs
a galaxy-based design to characterize the 2D projection,
thereby providing a multi-scale visualization that shows a
semantic summary in addition to a detailed illustration of
the images. Multiple interactions are proposed to involve
the users domain knowledge in the co-embedding process
to refine the projection layout. In the future, we plan to ap-
ply a more powerful image captioning model to detect more
accurate and detailed semantic information embedded in
images. In order to support progressively adding or deleting
words, we will develop or adopt appropriate progressive t-
SNE to accelerate our co-embedding model. We will also
attempt to integrate natural language processing methods
to provide more useful interactions for users to investigate
the relationship between keywords and images.
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