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ABSTRACT

Monitoring equipment conditions is of great value in manufactur-
ing, which can not only reduce unplanned downtime by early de-
tecting anomalies of equipment but also avoid unnecessary routine
maintenance. With the coming era of Industry 4.0 (or industrial in-
ternet), more and more assets and machines in plants are equipped
with various sensors and information systems, which brings an
unprecedented opportunity to capture large-scale and fine-grained
data for effective on-line equipment condition monitoring. How-
ever, due to the lack of systematic methods, analysts still find it
challenging to carry out efficient analyses and extract valuable in-
formation from the mass volume of data collected, especially for
process industry (e.g., a petrochemical plant) with complex manu-
facturing procedures. In this paper, we report the design and im-
plementation of an interactive visual analytics system, which helps
managers and operators at manufacturing sites leverage their do-
main knowledge and apply substantial human judgements to guide
the automated analytical approaches, thus generating understand-
able and trustable results for real-world applications. Our system
integrates advanced analytical algorithms (e.g., Gaussian mixture
model with a Bayesian framework) and intuitive visualization de-
signs to provide a comprehensive and adaptive semi-supervised so-
lution to equipment condition monitoring. The example use cases
based on a real-world manufacturing dataset and interviews with
domain experts demonstrate the effectiveness of our system.

1 INTRODUCTION

Equipment maintenance is of vital importance in manufacturing.
Inappropriate maintenance and arbitrary failure of equipment will
lead to inefficiency and even safety issues, especially in process in-
dustry1 which cannot be entertained in this competitive age. Thus,
over the past few years, there has been a concerted effort to im-
prove the maintenance strategy. However, the majority of manu-
facturers are still practising planned schedule maintenance [31], in
which the equipment is operated until a predetermined time when
maintenance is carried out. This strategy often leads to either over-
maintenance as the time tends to be chosen before any potential
failure; or lack-of-maintenance since it’s almost impossible to cater
for all varying failure patterns beforehand. Therefore, an on-line
equipment condition monitoring system is in demand which can
not only reduce unplanned downtime by early detecting equipment
“health” issues but also reduce unnecessary routine maintenance for
better availability.

Fortunately, with a worldwide movement of Industrial Internet
(or Industry 4.0) [11, 20], the increasing availability of manufac-
turing data [2] generated within highly digitalized and connected
“smart factories” opens up unprecedented opportunities for man-
ufacturers to engage in data-driven science to better understand
equipment conditions. However, without an effective method, the
data is usually analyzed in aggregated statisics [2]; thus, valuable
insights into local details and trends are often missing. Although
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there have been some attempts in developing algorithms to model
and measure equipment conditions [13, 31], it is still difficult for
analysts to trust or make use of the results [23] since manufactur-
ing data are highly dynamic and analytical tasks are usually com-
plicated. In another word, a fully automatic equipment condition
monitoring is difficult, requiring considerable experience and pro-
found knowledge in various fields. Thus, analysts seek the help of
visual analytics to take full advantage of both advanced computa-
tional power and human cognitive abilities for a more granular and
intelligent monitoring approach.

Despite that the crucial role of visual analytics has been iden-
tified [36], to the best of our knowledge, few examples have been
reported which apply visual analytics to equipment condition mon-
itoring in manufacturing. In this paper, we work closely with man-
agers and operators in a petrochemical plant, a typical type of fac-
tory in process industry, to help them deal with challenges met in
equipment maintenance. In particular, we build a visual analyt-
ics system with a semi-supervised framework to help managers and
operators define health status of online equipment and derive mean-
ingful rules or patterns for effective equipment condition monitor-
ing. Due to the lack of a precise definition of boundary between nor-
mal and abnormal equipment conditions, it is hard to be achieved by
pure automatic solutions, especially for process industry with com-
plicated and highly-sensitive correlations among a large number of
variables. In our work, this is accomplished following a human-in-
the-loop approach [8] by which users could interact with context
information conveniently and apply their own domain knowledge
in the analytical process. The major contributions of this work can
be summarized as follows:

• We design and implement a visual analytics system with a
semi-supervised framework to address the major challenges
of equipment condition monitoring met by real world opera-
tors and managers from a factory of process industry (i.e., a
petrochemical plant).

• We develop a suite of interactive visualization techniques en-
hanced with new features to support visual-assisted knowl-
edge discovery and sense making from manufacturing data,
thereby helping users define status and train adaptive models
for effective equipment life-cycle condition monitoring.

• We showcase an experience of working with target users from
manufacturing industry to iteratively design a visual analytics
system, deploy on site, and evaluate through case studies and
expert interviews.

2 RELATED WORK

2.1 Visualization of Manufacturing Data
In recent years, with the launch of Industrial Internet (or Indus-
try 4.0), more and more people have started to realize the value of
data collected through the manufacturing process and tried to ana-
lyze them to reveal important insights that can improve manufactur-
ing [2]. With the growing amount and complexity of manufacturing
data, it could be anticipated that visual analytics, an effective ap-
proach for gaining insight from large and complex data [29], would
play a more and more crucial role [36].

However, so far only a few visual analytics solutions target the
data analysis tasks in manufacturing scenarios. Jo et al. [18] present

1Process industry is the branch of manufacturing industry associated
with formulas and manufacturing recipes, which is contrasted with discrete
industry that is concerned with discrete units, bills of materials and assem-
bly of components. For example, process industries include manufacturing
in chemical, petrochemical, pharmaceutical and biotechnology, etc. [21].
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LiveGantt as an interactive visualization tool for a large manufac-
turing schedule. Wörner and Ertl [45] introduce a visual analyt-
ics system for manufacturing simulation. In this paper, rather than
the planning and simulation stage, we focus on the operation stage
of manufacturing which has not received much attention from re-
searchers in the field of visualization. Matkovic et al. [32] ex-
ploit virtual instruments enhanced with history encoding for pro-
cess monitoring. Compared with this method, our work integrates
in-depth analysis and modeling process with intuitive visualizations
into an advanced monitoring solution. In addition, Xu et al. [49]
propose ViDX, a visual analytics system, to analyze performance
and identify inefficiencies of assembly lines in an automobile fac-
tory. This method depends on historical data of processing time of
each part on a certain work station, which makes it inapplicable to
process industry. To the best of our knowledge, our system is the
first to provide an array of visualizations that can be combined for
interactive equipment real-time condition monitoring in process in-
dustry and facilitating an interpretation to leverage users’ domain
knowledge and experience.

2.2 Visualization of Time-series Data
Time-series data are ubiquitous in manufacturing industry, which
are collected from various sensors, monitoring the status of differ-
ent parts and aspects of a factory. Thus, understanding and an-
alyzing these time-series data is the basis for condition monitor-
ing of equipment in factories. In the past few years, researchers
have spent much effort to develop visualization techniques for time-
series data [1]. The most prevalent method is based on the horizon
axis [54]. For example, line chart [14] and its variants, like horizon
graph [47], show the changes of one attribute over time with a hori-
zon time axis, while stacked graph [48] is used to show the changes
of multiple attributes over time simultaneously. Besides, various vi-
sualization techniques are proposed to support different analytical
tasks on time-series data in real applications. For example, Zhao
et al. [53] present the Ringmap that employs subdivided ring seg-
ments with different colors to visualize multiple cyclic activities
over time. Van et al. [43] present a calendar display to explore data
which are aggregated daily, weekly and monthly. Our system is in-
spired by these techniques and integrates them with several novel
designs and interaction techniques. Beyond presentation tools, we
propose more comprehensive visual analytics techniques to handle
multiple analytical tasks for smart machine condition monitoring.

2.3 Anomaly Detetction
The problem of machine condition monitoring can be approached
within the framework of anomaly detection, which identifies abnor-
mal patterns based on a model trained with numerous examples rep-
resenting “normal” patterns. This is especially suitable for monitor-
ing conditions of on-site machines in factories of process industry,
where large amounts of data for “normal” conditions are available,
while there are always insufficient data to describe various kinds of
“anomalies”.

Given its wide range of applications, anomaly detection has
been extensively studied over the past decades [7, 16]. Pimentel
et al. [34] summarized previous work and categorized related
techniques into five major types, including a) domain-based, b)
information-theoretic, c) distance-based, d) reconstruction-based,
and e) probabilistic techniques. In particular, domain-based tech-
niques [15, 30] offer a straightforward approach, aiming to de-
fine a boundary around the “normal” data that any point falling
outside is considered as abnormal. However, this type of tech-
niques is often influenced by outliers in the training set, and the
choice of parameters which control the size of the boundary re-
gion is also difficult. Information-theoretic techniques [24, 37] de-
tect anomalies based on information-theoretic measures, such as
entropy. This type of techniques could be applied to produce nu-
meric results of anomalies, e.g., the abnormal score, but are lim-
ited in offering interpretation and understandability. In addition,
distance-based techniques [25, 46] measure similarity between data
points and identify “anomalies” occurring far from their nearest
neighbours, but it’s computationally expensive to calculate distance
between all pairs of data points, especially in a high-dimensional
space and a large dataset, which makes these techniques hard to
be applied for real-time monitoring. Stojanovic et al. [40] try
to tackle this challenge by employing clustering method and par-
allel computing techniques. However, it still suffers poor inter-
pretability which makes it difficult for users, especially those in
the traditional process industry, to trust or make use of the results.

In comparison, reconstruction-based techniques [17, 27] perform
data-mapping based on constructed models and estimate a reference
“normal” condition to enable comparisons with the actual observed
value in a much easier way, while probabilistic techniques [19, 41]
characterize data with more interpretable statistic models, which is
essential to support an interactive analysis in real-world traditional
industrial applications [42]. Our system integrates these two types
of techniques and present a unified visual analytics framework that
enable interactive and adaptive anomaly detection situated in the
streaming, traditional manufacturing data scenarios.

Moreover, in recent years, a few visual analytics systems are de-
signed for anomaly detection [5, 6, 33, 52], which are also related
to our work. For example, Zhao et al. presented FluxFlow [52]
to identify and interpret anomalous information spreading patterns.
Cao et al. introduced TargetVue [5] employing intuitive glyph de-
sign to facilitate detection of users with abnormal behaviors on so-
cial media. Different from all these previous work, we introduce
a unique, adaptive real-time anomaly investigation method, which
incorporates human judgement to guide the detection algorithm to
produce interpretable results that can be accepted and made use of
by users in traditional manufacturing industry. The proposed visual
interactive framework not only respects users’ working habits in
process industry but also enables monitor and investigate with rich
context information in general big manufacturing data scenarios -
where real-time analysis and intuitive visualization are desirable.

3 SYSTEM DESIGN AND OVERVIEW

3.1 System Design
3.1.1 Data Description and Transformation
Since 1970s, the third industry revolution with the main characters
of automation has swept across the world. General-purpose com-
puting devices, such as programmable logic controllers (PLCs), are
widely deployed to control and monitor industrial processes au-
tomatically, especially in process industry. These devices could
be viewed as a series of sensors. The data involved in this re-
search is a set of time-series data collected from streaming data
sources enabled by these sensors, which record the status of dif-
ferent parts of a factory from time to time. The data format
is < Timestamp, IDsensor, Value >.

In our system, we first transform the raw data from these stream-
ing data sources into a vector time series as shown in Fig. 1a to
support a near-real-time analysis. We note that our system runs
in near-real-time as the data analysis and visualization are lagging
slightly behind the data collection process. In particular, due to dif-
ferent sampling rate of sensors, within each time span in the time
series, the system collects and calculates the average value of all
records for each sensor, thus producing a vector. When all sensors
get updated values, the system continues analyzing and visualiz-
ing the data collected at time span (t − 1), while collects the new
data arriving at the current time span t. The granularity of a time
span could be chosen depending on the application requirements
and computational capacity of the analysis modules (e.g., 30 sec-
onds, 1 minute, or 5 minutes).

Figure 1: The pipeline for data processing and analysis.

3.1.2 Design Process
We followed a user-centered design process to develop and im-
prove our visual analytics system iteratively. In the past ten months,
we worked closely with four domain experts from a petrochemi-
cal plant, who were our target end-users as well. Two of them are
the manager and operator responsible for equipment operation and
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management, and the other two specialize in design and implemen-
tation of the “Industrial Big Data Services” program in the plant.
Frequent video conferences, email discussions, and regular on-site
meetings (monthly) were held at different design and implementa-
tion stages, aiming to close the gap between industrial needs and
available technologies for a practical and effective solution of data-
driven equipment condition monitoring.

3.1.3 Task Analysis
Through frequent exchange of views with the experts, we identified
three major challenges faced by our target users during equipment
condition monitoring, which helped us better understand the prob-
lem domain.

Firstly, how to define trustworthy observation rules for normal
or abnormal conditions (C1)? The domain experts found that the
traditional rules based on thresholds of sensor values were too
“rigid” for reflecting the complexity of real manufacturing con-
ditions, while engineers nowadays highly rely on experience on
equipment conditions in the past and struggle to make compara-
tive judgements. However, human activity often brings delays and
unstableness [40], which in turn degrades the capability of monitor-
ing and its efficiency. To make matters worse, there exist compli-
cated correlations among these sensor values, while understanding
such correlations is essential for effective monitoring. Thus, the
emerging problem is how to integrate engineer’s experience with
advanced computing capability for more effective and stable equip-
ment condition monitoring.

Secondly, the domain experts complained that the volume of
manufacturing data, that needs to be monitored, are large in scale
and even unmanageable, owing to a considerable number of sen-
sors in the plant and high sampling frequency. It leads to poor
transparency of equipment conditions and difficulties in making de-
cisions based on real data for time-critical tasks. Therefore, the
challenge met by our collaborators is how to facilitate engineers
in exploring and exploiting potentials in manufacturing data to im-
prove the capability and agility of sensing and responding to poten-
tial risks (C2)?

Last but not least, equipment’s conditions keep changing during
its entire life-cycle. Then another challenge is how to cope with
such changes so as to provide an adaptable and flexible condition
monitoring approach (C3)?

To tackle these challenges, a set of tasks are identified and com-
piled with the consideration of sense making models for intelli-
gence analysis [22, 35], which should be supported by our system:

T.1. Interactive Feature Extraction: It would be extremely ben-
eficial and important to engage the users with domain knowl-
edge and experiences on operating equipment in the model
construction process (C1), which is essential to help users un-
derstand how our system works, thus making it trustable for
users in traditional manufacturing industry. To this end, we
should provide interactive feature extraction functionalities
which should be easy to use even without understanding of al-
gorithm details. Therefore, as the first step, our system needs
to measure and visualize correlations between these sensors in
an intuitive way, and enables users to identify important target
sensors, extract their correlated ones, and make adjustments
based on experience (T.1.1). In this way, plausible monitor-
ing feature vectors can be generated for users. Meanwhile, as
suggested by our collaborators, target sensors need to be fur-
ther grouped into modules (T.1.2) for an efficient and compre-
hensive monitoring. This also matches users’ working habits.

T.2. Real-time Monitoring: Based on the extracted feature vec-
tors, users need to perform a real-time or near-real-time mon-
itoring based on the streaming manufacturing data in a large
scale so as to sense and respond to potential risks in a timely
manner (C2). Instead of relying on “subjective” expert ex-
perience, our system should support monitoring via a condi-
tion reference library (hereinafter referred to as training set)
constructed based on the “objective” past conditions (T.2.1),
which is then used to train the monitoring model. After that,
for the real-time monitoring, besides generating alarms, users
should be able to grasp a general idea of detected suspicious
or abnormal cases so that they could respond in a timely man-
ner (T.2.2).

T.3. Detail Inspection and Model Updating: Appropriate explo-
ration of details need to be done for practical applications. In

particular, users need to explore detected suspicious or abnor-
mal cases within context so as to formulate their own judge-
ment on potential causal relations (T.3.1). Meanwhile, in or-
der to adapt to various changing conditions during the entire
life-cycle of equipment (C3), the system should support users
to inspect and update the training set in an intuitive and flex-
ible way (T.3.2) so as to guide the system to refine the moni-
toring model according to the user feedback.

3.1.4 Design Goals
Based on the identified analytical tasks, we further compiled a set of
design requirements with our collaborators which guided the sub-
sequent design of our system.

R.1. Interpretability: Intuitive visual metaphor and narrative
structure. Visualizations with intuitive visual metaphors and
an easy-to-understand narrative structure are desired by our
collaborators. In this way, the system can support users from
traditional process industry, who may not have much back-
ground on information technology, to understand analytical
process, integrate with their domain knowledge, and discover
abnormal patterns with interpretable visual evidence and re-
lated details. Therefore, our system conveys information
through well-established and insightful visualizations, post-
ing relatively fewer challenges with respect to interpretation.
These techniques are further tailored or extended with new
features to address the specific needs for our problem. More-
over, multiple well-coordinated views are employed, thus en-
abling users to perform various analytical tasks step-by-step.

R.2. Insightfulness: Dual-scale encoding for a full picture of
equipment conditions. For online monitoring (T.2.2) in real-
world applications, a full picture of equipment conditions at
two different scales is often required. On one hand, users
want to examine the detected suspicious or abnormal case in a
timely manner so as to understand “when and what happens”
and enable them to take prompt actions. On the other hand, it
is also crucial for users to grasp an intuitive overview of long-
term trends of equipment conditions which can shed more
light on several important issues for equipment monitoring.
For example, users may wish to know which sensor comes
up with more abnormal conditions in the last hour, or whether
there’re more anomalies detected today than yesterday. In this
way, they can get a quick idea of potential risks conveniently.

R.3. Interactivity: Interactive pattern unfolding. Since inspec-
tion of detected suspicious or abnormal cases in equipment
(T.3.1) requires a trial-and-error process, it is crucial for ana-
lysts to interact with data directly. Meanwhile, to carry out an
efficient and in-depth analysis, a multi-facet filtering based on
different properties should also be enabled in our system.

3.2 System Workflow
Fig. 2 illustrates the interactive analysis workflow of our system.

1) The workflow starts with the data preprocessing module

which leverages Apache Hadoop1 on a cluster with 19 data nodes
and 342 cores to support collecting and parallel processing of big
manufacturing data based on Map-Reduce. It transforms manufac-
turing data collected from on-site streaming data sources into a se-
ries of vectors (Fig. 1) as described in Section 3.1.1. The streaming
pipeline facilitates the online monitoring and analysis by our sys-

tem, and the processed results are stored in MongoDB2 database to
support online queries.

2) The system then enables users to interactively set target sen-
sors and configure modules for monitoring. It could either be a
data-driven decision based on an overview of correlations among
sensors in the Correlation View (e.g., users could choose sensors
highly correlated with others), or be determined based on users’
domain knowledge. For these chosen target sensors, users can fur-
ther extract correlated sensors to generate feature vectors (T.1).

3) After these configurations, users now can initialize a real-
time monitoring by training with a few selected training time pe-
riods (i.e., training set) during which the equipment is in good and
stable conditions (as reference conditions) based on their experi-
ence (T.2.1). During the monitoring process, two visualization

1http://hadoop.apache.org/
2https://www.mongodb.com/

142



Figure 2: System workflow: After data preprocessing and interactive feature extraction/configuration (Section 4.1), our system can support
real-time monitoring (Section 4.2) and detail inspection & model updating (Section 4.3).

views, namely In-situ Monitoring View and Summary View, are
provided to help users understand equipment conditions in a timely
manner (T.2.2) by revealing detected suspicious and abnormal in-
stances in two different scales intuitively.

4) Users can conduct an in-depth analysis of detected suspicious
or abnormal cases (T.3.1) in the Inspection View, based on which
users can verify their hypotheses as well as decide whether and how
to update the training set. For example, users can simply brush
to choose a few time periods in the Inspection View to add into
the training set. Then the Training Set View is designed to pro-
vide an online user feedback mechanism by incorporating users’
judgements and observations on distributions of the training set for
an iterative refinement (T.3.2), thus making the monitoring model
adaptable in real manufacturing of process industry.

.

4 INTERACTIVE EQUIPMENT CONDITION MONITORING VIA
VISUAL ANALYTICS

Our system consists of three visualization-based modules, which
work together to support three major steps of the human-in-the-
loop analysis process described in Section 3.1.3. In designing the
visualization techniques, we follow the design rationales discussed
above to present abstract quantitative analysis results. In this sec-
tion, we describe the visual analytics techniques designed for these
three modules in details respectively.

4.1 Interactive Feature Extraction:
In the first step, we want to allow users to get an overview of vari-
ous sensors and support them in model construction for monitoring,
including identifying target monitoring sensors, extracting feature
vectors, and configuring modules (Task T.1). To this end, we need
appropriate methods for correlation analysis of all sensors, which is
not a trivial task. Thus, in this section, we start with the description
on how to calculate the correlations between time-series generated
by two different sensors and then present the visualization designs
to support an interactive analysis.

4.1.1 Calculating Correlations
In order to show an overview of all sensors, the relationship be-
tween each pair of sensors should be measured based on a proper
calculation of correlations between time-series generated by these
sensors. In our implementation, we adopt Pearson Correlation Co-
efficient [28] which is widely used in various applications for its
simplicity and efficiency. Meanwhile, considering the character-
istics of manufacturing data and analytical tasks in our case, we
extend the calculation of correlation coefficients with an alignment
process. The general procedure is described as follows:

Step 1. Alignment of time-series. When analyzing correla-
tions of time series generated by different sensors on-site, time
lags exist ubiquitously, which requires serious considerations to
avoid misjudgment. Therefore, two sub-steps are carried out.
1) As time-series are generated by various sensors with differ-
ent scales, it is difficult to make a direct comparison for a proper
alignment. Thus, we first reconstruct the time series through
normalization. Meanwhile, for equipment condition monitoring,
as pointed out by our collaborators, we need to focus on the

pattern of changes rather than numerical values, thus the first-
order difference [3] is further adopted. In particular, a time se-
ries X = {(x1, t1),(x2, t2), ...,(xi, ti), ...,(xn, tn)} is reconstructed as
X ′ = {(0, t1),(x′2, t2), ...,(x′i, ti), ...,(x′n, tn)}, where

x′i =
xi− xi−1

maxi{‖xi− x̄‖}
2) After that, accounting for both positive and negative correla-
tions, we apply dynamic time warping [44] on the absolute value
of reconstructed time series. In this way, we get a set of < i, j >
pairs which matches each element (xi, ti) in the time-series X =
{(x1, t1),(x2, t2), ...,(xi, ti), ...,(xn, tn)} with each element (y j, t j) in

the time series Y = {(y1, t1),(y2, t2), ...,(y j, t j), ...,(yn, tn)}.
Step 2. Calculation of Pearson Correlation Coefficient. After

alignment, we now have a set of pairs < i, j >, based on which we
calculate Pearson Correlation Coefficient as follows:

r =
∑<i, j>(xi− x̄)(y j− ȳ)√

∑<i, j>(xi− x̄)2
√

∑<i, j>(y j− ȳ)2

where x̄ = ∑n
i=1 xi/n and ȳ = ∑n

j=1 y j/n. Furthermore, t-test is em-

ployed with Fisher z-transform to calculate a p-value to measure
the statistical significance of non-zero correlations (Null hypothe-
sis: correlation coefficient is 0). Thus, the correlation between each
pair of time-series can be described by a tuple {r, p}.
4.1.2 Visual Design and Interactions - Correlation View
Now that we have the correlation value r between any two sensors
and also its corresponding statistical significance p, we further de-
fine the degree dA of a sensor A as the number of sensors sharing
strong correlations with A (i.e., r > 0.4, p < 0.05 as suggested by
the experts in our implementation). The threshold could be adjusted
for different applications. Then we need a visualization to show the
results to users and support an interactive analysis. In our system,
we design the Correlation View with two concentric rings (Fig. 3a),
with outer layer R1 encoding all the equipment, and the inner one
R2 representing all the control loops contained by each equipment.
Each arc in these two rings encodes a subset of sensors contained by
a control loop or equipment. The central angle of an arc encodes the
total number of sensors in the corresponding subset, and the opacity
conveys the average degree of these sensors. The darker the color,
the more sensors share strong correlations with these sensors.

Once an arc is selected, the relationships of all sensors in the
corresponding subset are displayed with a force-directed layout in
the center. Each sensor is presented as a node whose size encodes
its degree. The larger the node, the more sensors sharing strong
correlations with the corresponding sensor. Moreover, if two sen-
sors share strong correlations, we add an edge between the corre-
sponding nodes, whose length encodes the correlation coefficient
‖r‖, color (i.e., blue and red) indicates positive or negative corre-
lations, and opacity encodes the statistical significance p. In addi-
tion, if a node in the center shares strong correlations with sensors
in other subsets, the corresponding arc will exert an attraction force
on it. Furthermore, users can interactively paint arcs and their corre-
sponding nodes with colors so as to facilitate comparisons (Fig. 3a-
1). In this way, by observing these nodes, users can make data-
driven choices of target monitoring sensors besides choices based
on their domain knowledge (Task T.1.1). Meanwhile, a module
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Figure 3: (a) In the Correlation View, two concentrated rings (i.e., R1
and R2) and a node-link diagram with force-directed layout are de-
signed to provide an overview of all sensors. Users can interactively
choose target monitoring sensors. (b) For a certain target monitoring
sensor, interactive analysis is supported to identify correlated sen-
sors and facilitate feature extractions.

configuration panel (Fig. 3b-1) is also provided, enabling users to
group target monitoring sensors into modules interactively (Task
T.1.2). For example, users can choose an existing module in the
pull-down list (Fig. 3b-6) or click on the ”+” to create a new mod-
ule. And then users can choose a target sensor for the selected
module by double clicking on a node of large size, indicating a
sensor highly correlated with many other sensors, which requires
close monitoring.

In addition, the Correlation View can support users to extract
correlated sensors for a target monitoring sensor, thus generating
corresponding feature vectors conveniently (Task T.1.1). Users
can select a target monitoring sensor in the module configuration
panel, and system will then highlight the corresponding node by
red contour in the node-link diagram (Fig. 3b-3), while those nodes
without strong correlations to the selected node will be turned into
grey. Furthermore, by right clicking on the node, it will emit bands
towards arcs, whose widths encode the number of sensors with
strong correlations with the target sensor in the corresponding sub-
sets (Fig. 3a-2). Users can further select these arcs with wider bands
to add those sensors into the node-link diagram for further explo-
rations. Moreover, as suggested by the domain experts, here we fur-
ther introduce a sample-based filtering technique. Users can click
on a node (Fig. 3b-4) to specify a certain correlated sensor based on
experience, then the system will filter out those nodes with weaker
correlations (Fig. 3b-2). Finally, once all correlated sensors are cho-
sen in the node-link diagram, users can click on the “update” button
(Fig. 3b-5) to save the result which is exactly the generated feature
vector for the corresponding target monitoring sensor.

4.2 Real-time Monitoring
Based on the extracted feature vectors, the system can support a
real-time monitoring of equipment conditions based on past refer-

ence conditions (Task T.2). Meanwhile, two visualization views are
presented to facilitate an intuitive monitoring process.

4.2.1 Monitoring Algorithm
First, we describe the monitoring algorithm [50] employed in our
system which is set up in a Bayesian framework. It is composed
of a training stage and a monitoring stage, which enables a semi-
supervised process to address the major challenges of equipment
condition monitoring in a real plant of process industry.

Training Stage In the training stage, we model “normal”
equipment conditions based on a training set, which consists of
a set of vector time-series describing past reference conditions
during certain time periods chosen by users based on experi-
ence. Thus, the current condition of equipment can be evaluated
through a comparative analysis. In particular, for a certain tar-
get monitoring sensor A, based on the extracted feature vectors
(i.e., a set of sensors correlated to sensor A) {Sensor A1, Sensor
A2, ..., Sensor Ak}, its past reference conditions can be charac-
terized by a vector time-series VA = {VA,t |t = 1,2, ...,N} where

VA,t = {ValueA,t ,ValueA1,t ,ValueA2,t , ...,ValueAk ,t}; ValueA,t and

ValueAi,t(i = 1,2, ...,k) indicate the value of target Sensor A and
correlated Sensor Ai at time span t. Then we choose to fit a
regressive Gaussian Mixture Model (GMM) with Dirichlet Pro-
cess [26, 38] on the chosen training set (i.e., vector time-series VA)
using Expectation Maximization (EM) algorithm, since GMM is
widely used in modeling complex distributions [9]. Different from
the traditional GMM, we assign an auxiliary weight βt to each vec-
tor VA,t of VA. The weight follows an exponential decay with re-
spect to time, considering that the vectors of recent equipment con-
ditions should weight more than old ones in our scenario. Thus,
in the M-step of the EM algorithm during the training process of
GMM, given the probability wt(l) that vector VA,t belongs to the
lth Gaussian component obtained in the E-step, the mean μl can be
calculated as

μl =
1

N

N

∑
t=1

wt(l)βtVA,t

The covariance σl is given by

σl =
1

N

N

∑
t=1

wt(l)βt(VA,t −μl)(VA,t −μl)
T

The weight of the lth Gaussian component is

πl =
∑N

t=1 wt(l)βt

∑N
t=1 βt

In this way, we can get a GMM with L components
{sl |sl ∼ N(μl ,σl), l = 1,2, ...,L}, where L is estimated adaptively
via approximate Bayesian criteria [38], thus characterizing past ref-
erence conditions of target monitoring sensor A.

Monitoring Stage The task for the monitoring stage is to es-
timate the normal value that a certain target monitoring sensor A
should have at time span t if the equipment operates normally and
evaluate risks for current conditions. To this end, in our system,
we introduce a Gaussian random vector ε with zero mean and di-
agonal covariance matrix Θ = diag(θ0,θ1, ...,θk) to map the ob-
served vector VA,t = {ValueA,t ,ValueA1,t ,ValueA2,t , ...,ValueAk ,t}
to the corresponding V′A,t based on the constructed GMM in the

training stage. Formally,

VA,t = V′A,t + ε
For each component sl of GMM, we have the joint distribution[

V′A,t
VA,t

]
|sl = N

([ μl
μl

]
,
[ σl σl

σl σl +Θ
])

Then, our task can be transformed to estimate

V∗A,t = E(V′A,t |VA,t ,Θ) =
L

∑
l=1

P(sl |VA,t ,Θ)E(V′A,t |VA,t ,sl ,Θ)

Unfortunately, both V′A,t and Θ are unknown and should be es-

timated based on VA,t , thus EM algorithm [51] is applied where

V′A,t is regarded as the hidden variable and Θ is the parameter

144



Figure 4: (a) In-situ Monitoring View shows the risks detected by the monitoring algorithm for all target sensors of a module in real-time; (b)
Summary View provides an overview of long-term trends of equipment conditions, which also keeps updating in real-time.

to be estimated. After iterations of E-step and M-step, we can
get the corresponding “normal” Value′A,t of the target monitor-

ing sensor A and the estimated diagonal covariance matrix Θ =
diag(θ0,θ1, ...,θk), with which we provide an adaptive approach to
measure the different deviation levels of observed value ValueA,t
with respect to each observed input vector VA,t . In particular, we
define four deviation levels to quantify corresponding risks (i.e.,
Good: |ValueA,t −Value′A,t | < θ0; Low risk: θ0 ≤ |ValueA,t −
Value′A,t |< 2θ0; Medium risk: 2θ0 ≤ |ValueA,t −Value′A,t |< 3θ0;

High risk: |ValueA,t −Value′A,t | ≥ 3θ0). Furthermore, we define

a high-risk case as a set of continuous time spans (more than two
time spans) with high risk.

Scalability of Algorithm In order to support a real time
monitoring, especially with a large number of correlated sensors,
we try to alleviate the scalability issue in two ways, including the
use of isotropic Gaussian model [9] and selection of a limited num-
ber of Gaussian components during EM iterations without much
loss of precision (> 95%) [50]. In this way, the proposed algorithm
is capable of monitoring real time data with waits of seconds.

4.2.2 Visual Design and Interactions
For visual design, the design goal is to allow users to efficiently
capture a general picture of equipment conditions (Task T.2.2).
Thus, two designs, namely In-situ Monitoring View and Summary
View, are adopted to visualize related information in two different
scales (R.2).

In-situ Monitoring View In this view, we want to show the
risks detected by the monitoring algorithm (i.e., suspicious or ab-
normal conditions), which can be represented by deviations of real
sensor values from estimated “normal” values over time. Based on
iterative discussions with our domain experts, we found that what
users from manufacturing sites want to understand is how the devi-
ations of chosen target sensors evolve over time and which sensor
needs further attentions. Thus, a composite design is adopted to
visualize related information in a compact way.

1) Module Flow: First, a module flow is generated for each mod-
ule, consisting of a group of target monitoring sensors. For aesthet-
ics and legibility, we employ a stacked graph, a well-established
and intuitive visualization method for time-varying data, in which
layers represent evolving deviations of those target sensors and are
stacked in a symmetrical shape to facilitate comparisons. Fig. 4a-1
shows an example of the module flow where the x-axis represents
time. The deviations of target monitoring sensors for each time
span are presented by vertical bars in different colors, namely sen-
sor deviation bar, which are aligned vertically at the corresponding
time point. The height of a bar indicates the deviation amount (i.e.,
|ValueA,t −Value′A,t |/θ0). The longer the bar, the higher the risk

with the sensor. For visual clearness, instead of connecting all bars
over the whole time period, we only connect those bars of sensors
with medium or high risks detected by the monitoring algorithm.
Thus, users can observe the temporal patterns of detected risks in-
tuitively. In addition, as suggested by our collaborators, the time
periods with high risks are further highlighted (Fig. 4a-3) for more
attentions. As time goes by, the flow keeps generating for new time
spans and shifts left grid by grid for an efficient in-situ monitoring.

2) Alert Sensor Strand: To enhance the understanding of the
overall condition of a monitoring module, we overlay two alert sen-
sor strands along the contour of the module flow (Fig. 4a-2). In this
way, by observing the shape of the strand curves, users can easily
grasp a general idea of overall risks of a module. Furthermore, to
help users easily track sensors with risks, we visualize those sensors
with medium and high risk as dots in a circle embedded within two
strands respectively (red lower strand for high risk; orange upper
strand for medium risk). The sizes of these dots encode deviations
(i.e., risks), and the colors are consistent with layers in the flow.
However, this design might lead to visual clutter when there are too
many sensors with medium or high risk. Then users can switch dots
to pie-charts (Fig. 4a-4) or track via interactive highlighting.

Summary View In-situ Monitoring View shows the live sta-
tus of target monitoring sensors for a limited time period (e.g., a
few minutes), while investigation on the long-term trends of equip-
ment conditions is also desired for a comprehensive online moni-
toring (R.2). To this end, our system further integrates a Summary
View to provide users with an overview of a module’s conditions
during a certain past time period. Radial visualizations, such as ring
maps, are commonly used for the analysis of temporal patterns. In-
spired by these designs, we also adopt an intuitive radar metaphor
with radial layout to present a series of monitoring sensor’s status
simultaneously. As shown in Fig. 4b, we create multiple concen-
tric rings. Each of these rings corresponds to a certain time period
in the past (e.g., one hour in our implementation), and the time is
assigned from the inner most ring to the outer most ring so as to
provide more space to reserve more details for recent time periods.
Each ring is divided into a number of sectors, each representing a
target monitoring sensor in the module. The sensors are linearly
arranged around the ring based on their order within the manufac-
turing process. In each sector, the lengths of arcs in different colors
(i.e., green, yellow, orange, and red) indicate the durations of the
corresponding sensor with different deviation levels (i.e., good, low
risk, medium risk, and high risk; refer to Section 4.2.1).

As time goes by, we simulate a radar scanning display to auto-
matically update the arcs in the outer most ring in real-time, where
the red cursor is rotating with a frequency decided by the granular-
ity of a time span during data transformation (Section 3.1.1). Thus,
by observing the lengths of arcs of different colors within different
rings or sectors, users can quickly see the trends and understand
which sensor is in a riskier condition; and whether the condition
of corresponding module is becoming worse and needs more atten-
tions. Furthermore, to facilitate comparisons, users can rotate the
view and reorder the sectors interactively.

Discussion on Scalability Due to the limited screen space
and capability of users for comparison tasks, these designs will be
faced with scalability issues when there are a large number of sen-
sors. In such cases, we consider that the goal of our system lies
in detecting risks of several key sensors of a certain equipment in
an early stage; therefore, we address scalability issues in two ways.
On one hand, the module of too many target monitoring sensors is
not recommended. On the other hand, when such cases come up,
we would follow the mantra “overview first and detail on demiand”.
We can first group sensors into modules, then modules into super
modules, and encode the statistical information of these super mod-
ules. When users click on a super module of interest, the contained
modules will be expanded and visualized for further analysis.
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Figure 5: The system interface for detail inspection: (a) Multi-facet Filter Panel enables efficient exploration of detected high-risk cases; (b)
Inspection View supports a closer inspection of vector time-series and analyzes their correlations.

4.3 Detail Inspection and Model Updating

4.3.1 Investigating Anomalies
Besides real-time monitoring, our system also enables an interac-
tive investigation of identified suspicious or abnormal cases to help
users explore potential causes and form their own judgement (e.g.,
whether to update the training set) (Task T.3.1). In this section, we
describe the interactive visual interface in our system to support this
exploration process.

Multi-facet Filter Panel Following the information seek-
ing mantra “Overview first, zoom and filter, then details
on demand” [39], our system integrates a Multi-facet Filter
Panel (Fig. 5a) to support an efficient exploration. The panel con-
sists of a calendar view, a timeline, a sensor list and a high-risk
case list. First, the sensor list on the top right presents the number
of high-risk cases detected for each target monitoring sensor, based
on which users can choose a few sensors for inspection. Then the
calendar panel on the top left shows the intensity of risks with the
chosen sensors on a daily basis. The color opacity is determined
by the number of detected high-risk cases. The darker the color,
the more high-risk cases our system detected on that day. Users
can select a set of continuous days on the calendar, and then the
timeline on the right will be updated to show the number of high-
risk cases for each hour during the selected days. By brushing on
the timeline, users can choose a specific time range for further ex-
ploration. Meanwhile, the detailed information of those high-risk
cases detected during the chosen time range will also be shown in
the high-risk case list on the bottom right. Users can also select to
focus on a particular case for further investigation.

Inspection View After the time range being chosen, a closer
inspection of the vector time-series is required to offer an intuitive
understanding of certain high-risk cases. In particular, our sys-
tem needs to support an in-depth exploration of multi-variant time-
series (i.e., time-series for a certain target monitoring sensor and
its correlated sensors) and analyze the correlations between them.
Well established visualization techniques are preferred by our col-
laborators for better interpretability and scalability. Thus, we em-
ploy a multi-line chart design as shown in Fig. 5b, which is a typical
juxtaposition visual comparison technique [12] by presenting items
side-by-side for a straight-forward analysis. In this multi-line chart,
we show the time-series of the target monitoring sensor on the top
and the correlated sensors below. For the target monitoring sen-
sor, we first come up with a river plot [4] design (Fig. 5b-1), where
the purple curve indicates the real observed value; the red curve
indicates the estimated normal value by the monitoring algorithm;
and the light grey field indicates the range within high-risk thresh-
old (i.e., deviations < 3θ0). However, when a long time range is

chosen, a direct application of river plot may result in visual clut-
ter and poor legibility due to high-frequency and large-amplitude
value changes of some sensors (e.g., vibration sensors). To tackle
this problem, we extend it with a pixel-based visualization and an
interactive time axis. The pixel-based visualization (Fig. 5b-2) pro-
vides an overview of estimated risks. Each cell represents a certain
level of risks (on vertical axis) during a certain time period showing
on the horizontal axis. The color opacity of each cell encodes the
number of time spans with the corresponding risk level during that
time period. Then users can use the interactive time axis (Fig. 5b-3)
to set anchors and stretch to get more space for certain time inter-
vals, where the corresponding river plot will be embedded. And the
remaining parts will be dynamically compressed by further aggre-
gation to adapt to the available space.

Furthermore, we include computational correlation analysis
methods in the Inspection View and design an interactive slider for
users to steer the algorithm. Users can brush on the river plot to
choose a certain time interval, then the system will identify and
highlight most correlated part in each time-series of correlated sen-
sors, following a similar procedure in Section 4.1.1. The opacity
of the highlighting part indicates how the correlation is. After that,
the correlated sensors will be reordered, and sensors with stronger
correlations will be ranked closer to the target monitoring sensor
at the top. Moreover, users can choose a few sensors with strong
correlations and sort them based on the temporal sequence of iden-
tified correlated parts in order to explore potential causal relations.
Meanwhile, manually adjusting the order of these sensors by the
“floating” and “sinking” buttons on the right is also supported for
convenient comparisons.

4.3.2 Updating Training Set
Based on the investigation of monitoring results in the Inspection
View, users can decide whether the training set needs to be refined
for model updating. Then, an on-line user feedback mechanism
for an iterative updating process by incorporating users observa-
tions and experience is desired (Task T.3.2). To this end, a Training
Set View is designed to allow users observe the distribution of the
chosen reference conditions in the training set and make adjust-
ments interactively. The detailed design is described as follows:

Training Set View First of all, the training set can be viewed
as a set of vector time-series indicating past reference conditions
during certain time periods. To reveal the distribution, we first need
to measure their similarity. Our system employs the sum of mini-
mum distances [10] whose basic idea is to find a mapping that min-
imizes the sum of the distances between each vector of two time-
series. To preserve the temporal information, the order of mapping
should be monotonic.
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Figure 6: Training Set View shows the distribution of chosen time-
series in the training set and supports an interactive updating.

Now that we have measured the similarity between any two vec-
tor time-series in the training set, then we need a visualization to
show the results to users. In our system, we employ Multidimen-
sional Scaling (MDS) to generate a scatter-plot display (Fig. 6) with
each point representing a vector time series during a certain time pe-
riod and the relative distance between each pair of points encoding
the similarity of the corresponding vector time-series. Meanwhile,
we extend the point-based display with an attribute glyph, where
the size of each point encodes the length of the time period and the
color encodes the temporal order. Particularly, a darker point of a
larger size represents a vector time series of a longer time period
in more recent times. In addition to the scatter plot, chosen time
intervals are listed on the right. To support a more convenient ex-
ploration of distribution with different levels of detail, our system
supports automatic splitting of chosen time-series by days or hours,
and the points in the scatter plot can then be updated accordingly.
In this way, users can easily get a general idea of a newly added
time-series and also remove unnecessary time-series interactively.
Finally, users can click ”save” and ”train” buttons at the bottom to
save the updated training set and start training/retraining process.

5 EVALUATION

To evaluate the usability and effectiveness of our system, we con-
ducted in-depth interviews with four domain experts invited by our
collaborators, including two equipment operators (Expert A and B)
and one program manager (Expert C) of the “Industrial Big Data
Services” from their petrochemical plant, and a professor (Expert
D) from a research consortium focusing on smart manufacturing.
In this section, we first describe a series of case studies based on
real-world manufacturing data, which demonstrates the usage of
our system. Then we report experts’ feedback on our system.

5.1 Case Studies
The dataset we used contains over 0.42 billion records of 791 sen-
sors in a petrochemical plant collected from January to March of
2016. As suggested by our collaborators, we made full use of this
three-month dataset to simulate the complete using process of our
system. In particular, 1) we used the data of January for feature
extraction and model construction. After that, the monitoring algo-
rithm was applied on the data of February and March respectively.
2) For February, we inspected the monitoring results for model vali-
dation and updating; 3) Then for March, we simulated the real-time
monitoring process.

First of all, we started the case study with a tutorial explaining
the major features of our system and demonstrating the system’s
functionalities. To make it easier to understand, we illustrated en-
coding schemes with example visualizations prepared earlier. The
tutorial lasted for about 1 hour, and the participants could ask any
questions during the tutorial to ensure fully understanding on how
to use the system and avoid misunderstanding. After that, our ex-
perts were invited to use the system to perform three major steps
described above with the help of a moderator who was available
to answer any question on system usage to avoid confusions. Dur-
ing the study, Expert A and B, who are our target users, operated
the system on a large screen, and sat together with Expert C and D
for frequent group discussions. In the following part, we report the
process in detail.

5.1.1 Correlation Identification for Monitoring Configuration
After loading the data of January into the system, the correlations
of all sensors were calculated and an overview was shown in the

Correlation View (Fig. 3a). By observing the rings, experts iden-
tified one arc of the outer layer R1 with relatively darker purple,
which indicated potential importance of the corresponding equip-
ment (in this case, it is a compressor) since more sensors sharing
strong correlations with the sensors on this equipment. By clicking
on this arc, the corresponding three control loops (i.e., arcs of the
inner layer R2) were highlighted and their containing sensors were
shown with a node-link diagram in the middle. Our experts then
interactively assigned different colors to different control loops for
better differentiation. In the node-link diagram, we could see that
there were two major clusters (highlighted with dotted circles in
Fig. 3a), one with more blue and orange nodes and the other with
more green nodes. Expert A commented that orange and blue nodes
correspond to sensors in two highly correlated control loops for ro-
tating axes (mechanical loop L1) and lube (lube loop L2), while
green nodes correspond to sensors in a relatively independent con-
trol loop for compression process (compress loop L3), which veri-
fied our observations in the node-link diagram. Based on this ob-
servation, experts picked a few nodes of large size, indicating more
correlations with other sensors, as target monitoring sensors and in-
teractively grouped them into two modules (Fig. 3c), where Module
1 contained 5 sensors in loop L1 and L2; and Mondule 2 contained
3 sensors in loop L3.

After that, experts had to identify correlated sensors for each tar-
get monitoring sensors to extract feature vectors for monitoring.
Expert B suggested that, for an effective and comprehensive mon-
itoring of the loop L3, except for those sensors on the equipment,
other sensors in the plant may also be considered. Thus he right
clicked on a big green node (a chosen target monitoring sensor),
and the generated green bands (Fig. 3f) indicated that this sensor
shared strong correlations with sensors of its upstream equipment.
Thus, sensors of those two correlated control loops of the upstream
equipment were added into the node-link diagram and assigned dif-
ferent colors for further exploration (Fig. 3b).

With the interactions supported by our system, experts could
combine their domain knowledge with the recommendations by the
calculation of our system to define correlated sensors for each target
monitoring sensor conveniently. For example, as shown in Fig. 3b,
after sample-based filtering, six nodes were highlighted in the node-
link diagram as candidates of correlated sensors for the chosen tar-
get sensor 310SV 18. However, experts found that the edge be-
tween one of these nodes (highlighted by an arrow in Fig. 3b) and
the target sensor was in very light blue, implying poor statistical
significance. Based on experience, Expert A told that the stable-
ness of this sensor was poor which might explain this observation.
Thus, this sensor is removed from the list of correlated sensors. In
this way, 2 modules of 8 target monitoring sensors were config-
ured with extracted feature vectors for condition monitoring of the
compressor. Initial models were constructed based on several time
periods in January chosen by experts when the compressor was in
good conditions according to their experience and records.

5.1.2 Inspection and Model Validation/Updating
With the constructed models, the monitoring algorithm was applied
on the data of February. Then the experts tried to use our system to
explore the monitoring results, so as to validate the initial models
and update the training set. As shown in Fig. 5, the sensor list on the
top right shows that a large number of high-risk cases were detected
for Sensor PI 3703 in Module 2. According to the calendar panel,
there were obviously more high-risk cases after Feb. 26. Therefore,
the experts clicked to choose two days, Feb. 26-27, then the time-
line on the right was updated. We can see that the high-risk cases
were detected continuously after 8:00 p.m. of Feb. 26, which made
our experts confusing since there were no accidents or anomalies
during that time period in their memory. Thus, they brushed on the
timeline to choose a time period of 7:00-9:00 p.m. to activate the
Inspection View for further exploration.

An overview of estimated risks of the target monitoring sensor
(i.e., PI 3703) was shown in the pixel-based visualization (Fig. 5b-
2) at the top of the Inspection View. By observing the cells at the
top representing high-risk level, the experts interactively added two
anchor points at 8:00 p.m. and 8:12 p.m. on the time axis, and
stretched to activate the river plot (Fig. 5b-1) for more details of
the first detected high-risk case. By inspecting the curves in the
river plot, we can clearly see that the estimated normal value of
Sensor PI 3703 (red curve) calculated by the monitoring algorithm
changes first, followed by a more significant change of the real
observed value (purple curve), while the grey field grows much
wider during that time period. Expert C inferred that the growth
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Figure 7: (a) In-situ Monitoring View and (b) Summary View for real-time monitoring of Module 2 based on the data of March.

of the grey field might imply an unstable manufacturing condition
with value changes of other correlated sensors. Thus, he suggested
to brush to choose a time period of 8:07-8:10 p.m. on the river
plot, covering the entire value changing process of Sensor PI 3703.
Then the system automatically highlighted the most correlated parts
of the time series below for other correlated sensors. The experts
chose three sensors with highlighted blocks in darker green, indicat-
ing stronger correlations, and sorted them based on the temporal se-
quence. Obviously, the changes on Sensor T I 3706 and PDI 3702
happened much earlier which may be the cause for the subsequent
high-risk case detected on Sensor PI 3703. Based on this obser-
vation, Expert A recalled that there was an adjustment of manu-
facturing parameters due to the switch of raw materials on Feb. 26,
which may explain so many high-risk cases detected by our system.
Therefore, the experts chose three time periods covering Feb. 27-
29, and added them into the training set for model updating. In
the Training Set View (Fig. 6), we can easily identify newly added
time-series which are represented by three darker points in the scat-
ter plot, lying a bit away from other points of January. This implies
the difference between the newly added time-series and the original
ones, These could be nomal operating conditions after the manu-
facturing parameter adjustment which were not captured in the pre-
vious training process. Hence, the experts believed that updating
models with these three new time-series can indeed help our sys-
tem more completely cover possible normal operating conditions
of the target sensor for better monitoring.

5.1.3 Real-time Monitoring
Based on the updated models, we simulated real-time monitoring
using the data of March. Based on two In-situ Monitoring Views
generated in our system, the experts could intuitively monitor the
current status of all sensors in Module 1 and Module 2 respectively.
Compared with Module 2 (Fig. 7a), there are more connected bands
on the module flow and more dots on the alert sensor strand of
Module 1 (Fig. 4a), indicating a poorer current condition of Mod-
ule 1. In addition, the growing height of the module flow of Mod-
ule 1, especially for the blue layer, caught our experts’ attention
and reminded us to prepare for potential risks on the corresponding
sensor. Meanwhile, by observing two generated Summary Views
(Fig. 4b and Fig. 7b), a larger number of orange arcs told that Mod-
ule 1 had been in a poorer condition during the past few hours. After
these observations, a high-risk case was detected around 7:00 a.m.
of Mar. 18, just as expected (highlighted with yellow contour in
Fig. 4a). Expert C commented that, with the real-time information
shown in the In-situ Monitoring View and Summary View, we could
observe potential risks in a much earlier stage and take necessary
measures accordingly.

5.2 Expert Feedback
Interactive Visual Design All experts were impressed by

the design of our system. Expert C commented that “The interface
is user friendly, and the visualizations are aesthetically pleasing”.
In particular, Expert A and B were fond of the design of the In-situ
Monitoring View and Summary View, and Expert B said that “The
flow and radar metaphors provide vivid and compact presentations
of real-time equipment conditions from different scales, which is
helpful to identify overall trends and make comparisons”. Expert
A added “Compared to the traditional monitoring dashboard in
a tabular or line-chart form, I can easily grasp a general idea of
equipment conditions by quickly glancing at these two views. It
significantly reduces my work burden”. In addition, Expert D con-
sidered detail inspection valuable for users to deeply inspect time-
series data. He also appreciated the flexible exploration supported
by the Multi-facet Filter Panel and Inspection View, and highlighted

that “Flexible navigation is essential to address complex analyti-
cal tasks, and side-by-side comparisons provide a straightforward
approach for pattern identification”. Last but not least, the ex-
perts also acknowledged the usefulness of the Correlation View and
Training Set View for an interactive modeling process.

Usability and Improvements Expert C appreciated our
system as a pioneering work for exploring the potential of applying
visual analytics in smart factories of process industry. Expert A be-
lieved that a major advantage of our system is “It combines intuitive
visualization with advanced analytical methods to provide a power-
ful tool for exploring data and steering the analysis process, which
makes users feel more comfortable and confident about the results
obtained from the system”. Expert B added “At first, I was attracted
by such a novel and modern dashboard, but it did require a bit of
learning curve at the beginning to get familiar with all the views
and operations of the system. Once I get used to it, I find these visu-
alizations adopted are quite informative and the nalytical pipeline
is easy to follow”. Expert D was interested in the correlation anal-
ysis supported by our system and said “This method should be very
useful to extend to other applications in manufacturing, such as
fault analysis, because it could help avoid missing potential factors
by fully combining advantages of human and computers”. Besides
that, valuable suggestions are also raised to improve the system.
Expert C suggested “We could take other manufacturing informa-
tion, such as maintenance records, into consideration, which could
help to refine the training set for more accurate model construc-
tion”. In addition, Expert D commented that, except for Pearson
Correlation Coefficient, our system could integrate more advanced
correlation measurements to characterize relationships among sen-
sors in a more comprehensive way.

6 DISCUSSION AND FUTURE WORK

In this work, we present an interactive visual analytics system to
support an effective and efficient equipment condition monitoring.
A semi-supervised framework and a suite of interactive visual-
izations are proposed to address the major challenges and enable
visual-assisted knowledge discovery. Well-established visualiza-
tion techniques are employed to lower the learning curve for engi-
neers in a plant of process industry without related background. We
demonstrate the effectiveness and usefulness of our system through
case studies and expert interviews. Our work is still in progress.
There exist some limitations of the current prototype that we would
like to address in the future. First, it is our plan to further investi-
gate more advanced anomaly detection models for equipment con-
ditions and improve current monitoring algorithm to enable a more
effective analysis under complex situations of manufacturing. In
addition, we also intend to conduct well-organized and long-term
studies with quantitative measurements and collect feedbacks from
end users to further improve our system.
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