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Abstract—In this paper, we study ways to enhance the composition of teams based on new requirements in a collaborative

environment. We focus on recommending team members who can maintain the team’s performance by minimizing changes to the

team’s skills and social structure. Our recommendations are based on computing team-level similarity, which includes skill similarity,

structural similarity as well as the synergy between the two. Current heuristic approaches are one-dimensional and not comprehensive,

as they consider the two aspects independently. To formalize team-level similarity, we adopt the notion of graph kernel of attributed

graphs to encompass the two aspects and their interaction. To tackle the computational challenges, we propose a family of fast

algorithms by (a) designing effective pruning strategies, and (b) exploring the smoothness between the existing and the new team

structures. Extensive empirical evaluations on real world datasets validate the effectiveness and efficiency of our algorithms.

Index Terms—Graph kernel, scalability, team composition

Ç

1 INTRODUCTION

IN defining the essence of professional teamwork, Hack-
man and Katz [1] stated that teams function as ‘purposive

social systems’, defined as people who are readily identifi-
able to each other by role and position and who work
interdependently to accomplish one or more collective
objectives. The responsibility for performing the various
tasks and sub-tasks necessary to accomplish the team’s goal
is divided and parceled-out among the team. Team effec-
tiveness often depends upon the appropriate team structure
and distribution of skills.

A promising algorithmic approach to team composition
treats a team as a subgraph embedded in a larger social net-
work. Prior research has focused on assembling a team from
scratch while satisfying the skill requirements at minimum
communication cost (e.g., diameter and minimum spanning
tree) [2]. If the tasks arrive in an online fashion, the workload
balance among the people needs to be considered [3]. In
practical scenarios, there are more realistic requirements in
the team formation, e.g., inclusion of a designated leader and
size of a team [4]. With the increasing constraints, the team

formation problem is NP-complete. Prior work to formulate
automated ways of forming a team has used heuristic
approaches (e.g., RarestFirst and SteinerTree) but so far lacks
efficient solutions [2]. Our work differs from previous efforts
in three ways: (1) we alter the composition of an existing
team based on new requirements; (2) we solve the problem
in a principled approach with the notation of graph kernel;
and (3) we design a set of efficient algorithms.

Specifically, we address a family of problems under the
scope of TEAM ENHANCEMENT, namely, (1) TEAM MEMBER

REPLACEMENT, (2) TEAM REFINEMENT, (3) TEAM EXPANSION and (4)
TEAM SHRINKAGE. TEAM MEMBER REPLACEMENT was first defined
in [5], which concerns the churn of teammembers. For exam-
ple, an employee in a software or sales team might decide to
leave the organization and/or be assigned to a new task. The
loss of a key member might lead to severe consequences for
the team performance. The central question of TEAM MEMBER

REPLACEMENT is how to find the best alternative from the rest
network when a team member becomes unavailable. Differ-
ent fromTEAMMEMBER REPLACEMENT, TEAM REFINEMENT consid-
ers refining a team by replacing one member with another
with the desired skill sets and communication connections.
In the above two problems, the team size remains the same.
In TEAM EXPANSION, we want to expand the team by adding a
member with certain skill sets and communication structure.
For instance, a software project teamwants to develop a new
feature of natural language search and a new member with
Natural Language Processing (NLP) skill will be recruited.
On the contrary, in TEAM SHRINKAGE, the size of a team needs
to be reduced in response to new challenge such as a short-
age of the available resource (e.g., a budget cut). In all cases,
the resulting disruption [6] should beminimized.

By careful inspection, we identify the problem similarity
between TEAM REFINEMENT, TEAM EXPANSION and TEAM MEMBER

REPLACEMENT and propose these problems can be formulated
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in a way to share common technical solutions. In TEAM

REFINEMENT, one team member is edited to a desired skill and
network structure configuration. Since such edited member
might not exist in the rest of the network, we call it a ‘virtual
member’. By replacing this ‘virtual member’ as in TEAM

MEMBER REPLACEMENT, we can solve TEAM REFINEMENT. Simi-
larly, in TEAM EXPANSION, the desired new member might also
be a ‘virtual member’. After adding this ‘virtual member’ to
the current team and then replacing the ‘virtual member’, we
can solve TEAM EXPANSION. We propose to reduce the disrup-
tion induced by the team alteration by maintaining the team-
level similarity (between the original and the new teams),
which includes skill similarity as well as structural similarity.
The proposition is backed by some recent studies which show
that team members prefer to work with people they have
worked with before [7] and that distributed teams perform
better when members know each other [8]. Furthermore,
research has shown that specific communication patterns
amongst teammembers are critical for performance [9].

We adopt the notion of graph similarity/kernel to char-
acterize the team-level similarity for TEAM ENHANCEMENT.
Through the lens of labeled graph for modeling teams,
graph kernel can naturally capture the skill similarity and
the structural similarity simultaneously. However, to solve
TEAM MEMBER REPLACEMENT, TEAM REFINEMENT and TEAM

EXPANSION on a team of size t in a network with n individu-

als and l skills, the basic approach would take Oðnlr0t3Þ
computations where r0 is the effective rank of the Kronecker
product graph1, which is computationally intractable. For
example, for the DBLP2 dataset with almost 1M users (i.e.,
n � 1; 000; 000), we found that it would take 6,388s to find
one replacement for a team of size 10. To address the
computational challenges, we propose a family of fast algo-
rithms by carefully designing the pruning strategies and
metric analyses for exploring the smoothness and corre-
spondences between the existing and the new teams. We
perform the extensive empirical evaluations to demonstrate
the effectiveness and efficiency of our methods. Specifically,
we find that (1) by encoding both the skill and structural
matching, we can achieve a much better replacement result.
Compared with the best alternative choices, we achieve
27 percent and 24 percent net increase in average recall and
precision, respectively (see Section 6.2 for details); (2) our
fast algorithms are orders of magnitude faster and scale sub-
linearly. For example, our pruning strategy alone leads up
to 1,709� speed-up, without sacrificing any accuracy.

The main contributions of this paper are as follows.

1 Problem Formulation. We formally define a family
of problems under the scope of TEAM ENHANCEMENT,
to alter the composition of a team in the context of
networks where nodes carrying on multiple labels
(skills) and edges representing social structures.

2 Algorithms and Analysis. We solve the problem
by introducing graph kernels and propose a family of
effective and scalable algorithms for TEAM ENHANCE-

MENT; and analyze the correctness and complexity.

3 Experimental Evaluations. We perform extensive
experiments, including user studies and case studies,
on real world datasets, to validate the effectiveness
and efficiency of our methods.

The rest of the paper is organized as follows. Section 2
formally defines TEAM ENHANCEMENT problem. Section 3
presents our basic solutions. Section 4 addresses the compu-
tational challenges. Section 5 discusses the solutions for
TEAM REFINEMENT, TEAM EXPANSION and TEAM SHRINKAGE.
Section 6 presents the experimental results. Section 7
reviews some related work. Section 8 concludes the paper.

2 PROBLEM DEFINITIONS

In this section, we formally define the family of TEAM ENHANCE-

MENT problems. Table 1 lists themain symbols used throughout
this paper. We describe the n individuals by a labelled social
network G :¼ fA;Lg, where A is an n� n adjacency matrix
characterizing the connectivity among different individuals;
and L is n� l skill indicator matrix. The ith row vector of L
describes the skill set of the ith individual. For example, sup-
pose there are only three skills in total, including {data mining,
databases, information retrieval}. Then an individual with a skill
vector ½1; 1; 0� means that s/he has both data mining and data-
bases skills but no skill in terms of information retrieval. L could
be a binary matrix indicating the existence of a skill or a real
matrix reflecting the strength of the skill. Also, we represent the
elements in a matrix using a convention similar to Matlab, e.g.,
Aði; jÞ is the element at the ith row and jth column of the
matrixA, andAð:; jÞ is the jth columnofA, etc. For the ith indi-
vidual, we define the associated skill vector as l ¼ Lði; :Þ and
communication structure vector as a ¼ Aði; :Þ.

We use the calligraphic letter T to index the members of
a team, which includes a subset of t ¼ jT j out of n individu-
als. Correspondingly, we can represent the team by another
labelled team network GðT Þ :¼ fAðT ; T Þ;LðT ; :Þg. Note
that AðT ; T Þ and LðT ; :Þ are sub-matrices of A and L,
respectively. If we replace an existing member p 2 T of a
given team T by another individual q =2 T , the new team
members are indexed by T p!q :¼ fT =p; qg; and the new
team is represented by the labelled network GðT p!qÞ. If we
lay off an existing member p 2 T of a given team T , the new
team members are indexed by T =p :¼ fT =pg; and the new

team is represented by the labelled networkGðT =pÞ.
With the above notations and assumptions, our problems

can be formally defined as follows:

Problem 1. TEAM MEMBER REPLACEMENT

TABLE 1
Table of Symbols

Symbols Definition

G :¼ fA;Lg the entire social network
An�n the adjacency matrix ofG
Ln�l skill indicator matrix

T the team member index
GðT Þ the team network indexed by its members T
di the degree of the ith node in A
l the total number of skills
t the team size, i.e., t ¼ jT j
n the total number of individuals in A
m the total number of connections in A

1. This can be achieved by using conjugate gradient method detailed
in Section 4.2 in [10], otherwise the complexity is Oðnt6Þ.

2. Please see Section 6.1 for details of DBLP.
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Given. (1) A labelled social network G :¼ fA;Lg, (2) a team
GðT Þ, and (3) a team member p 2 T ;

Recommend: An alternate q =2 T to replace the person p’s role
in the teamGðT Þ.

Problem 2: TEAM REFINEMENT

Given: (1) A labelled social network G :¼ fA;Lg, (2) a team
GðT Þ, (3) a team member p 2 T , and (4) desired skill l
and communication structure a for p;

Recommend: A candidate q =2 T with skill l and communica-
tion structure a to refine the person p’s role in the team
GðT Þ.

Problem 3: TEAM EXPANSION

Given: (1) A labelled social network G :¼ fA;Lg, (2) a team
GðT Þ, and (3) desired skill l and communication struc-
ture a for a new member;

Recommend: A new member q =2 T with skill l and communi-
cation structure a to join the teamGðT Þ.

Problem 4: TEAM SHRINKAGE

Given: (1) A labelled social network G :¼ fA;Lg, and (2) a
teamGðT Þ;

Recommend: A member p 2 T to leave the teamGðT Þ.
Next, we will introduce our designed “goodness” metric

for ranking the candidates.

3 TEAM MEMBER REPLACEMENT: PROPOSED

SOLUTIONS

In this section, we present our solutions for TEAM MEMBER

REPLACEMENT. We start with the design objectives for the
TEAM MEMBER REPLACEMENT problem, present graph kernel as
the basic solution to fulfill such design objectives; and
finally analyze the main computational challenges. We
postpone the discussion on TEAM REFINEMENT, TEAM

EXPANSION and TEAM SHRINKAGE in Section 5.

3.1 Design Objectives

Generally speaking, we want to find a similar person q to
replace the current team member pwho is about to leave the
team. Natually, the replacement q should have a similar skill
set as the current member q in order to perform the (sub)
tasks q is involved in. More importantly, as recent studies
show, team members prefer to work with people they have
developed strong working relationships in the past [7]. This
suggests a good replacement should also bring a similar
social relationships with the team members. That is, a good
replacement q should not only have a similar skill set as team
member p; but alsomaintains team cohesion defined by simi-
lar social connectivity and fostering good chemistry among
the teammembers and/or being less disrupted. Defining the
team context is critical. In other words, the similarity
between individuals should be measured in the context of
the team itself. Often, the success of a team largely depends
on the successful execution of several sub-tasks, each of
which requires the cooperation among several team mem-
bers with certain skill configurations. For example, several
classic tactics often recurringly find themselves in a success-
ful NBA team, including (a) triangle offense (which is featured
by a sideline triangle created by the center, the forward, and the
guard), (b) pick and roll (which involves the cooperation

between two players - one plays as ‘pivot’ and the other
plays as ‘screen’, respectively), etc. Generally speaking, team
performance arises from the shared knowledge and experi-
ence amongst team members and their ability to share and
coordinate their work. As noted in the introduction, a spe-
cific pattern of communication is associated with higher
team performance. Maintaining that communication struc-
ture should therefore be less disruptive to the team.

If we translate these requirements into the notations
defined in Section 2, it naturally leads to the following two
design objectives for a good TEAM MEMBER REPLACEMENT:

� Skill matching: the new member should bring a simi-
lar skill set as the current team member p to be
replaced that are required by the team.

� Structural matching: the new member should have
similar connects to the rest of the team members as
team member p.

3.2 Basic Solutions

In order to fulfill the above two design objectives, we need a
similarity measure between two individuals in the context
of the team itself that captures both skill matching and the
structural matching as well as the interaction of both. We
refer to this kind of similarity as team context aware similarity.
Mathematically, the so-called graph kernel defined on the
current and new teams provides a natural tool for such a
team context aware similarity. That is, we want to find a
replacement person q as

q ¼ argmax
j;j =2 T

KerðGðT Þ;GðT p!jÞÞ: (1)

In Eq. (1),GðT Þ is the labelled team graph; andGðT p!jÞ is the
labelled team graph after we replace a team member p by
another individual j; and Kerð : Þ is the kernel between these
two labelled graphs. Generally speaking, the basic idea of var-
ious graph kernels is to compare the similarity of the sub-
graphs between the two input graphs and then aggregate
them as the overall similarity between the two graphs. As
such, the graph kernel is able to simultaneously capture both
the skill matching and the structure matching, beyond the
simple ad-hoc combination between the two (e.g., weighted
linear combination, multiplicative combination, sequential fil-
tering, etc). We would like to emphasize that this treatment is
important - as we will show in the experimental section, it
leads to much better performance over all the alternative
choices. Let us explain the intuition/rationality of why graph
kernel is a natural choice for team context aware similarity.
Here, each subgraph in a given team might reflect a specific
skill configuration among a sub-group of team members that
is required by a certain sub-task of that team. By comparing
the similarity between two subgraphs, we implicitly measure
the capability of the individual j to perform this specific sub-
task. Thus, by aggregating the similarities of all the possible
subgraphs between the two input graphs/teams, we get a
goodness measure of the overall capability of the individual j
to perform all the potential sub-tasks that team member p is
involved in the original team. Note that the team replacement
scenario is different from team formation [2], [3], [4]. This
existing work on team formation aims to build a team from
scratch by optimizing some pre-chosen metric (e.g.,
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compatibility, diversity, etc). In contrast, we aim to find a new
team member such that the new team resembles the original
team as much as possible. Team formation is typically an
effortful and prolonged process (weeks, months, years) and
team training is hugely resource intensive. For instance, teams
usually go through several stages - the most popular model
being “storming, forming, norming, performing”. Our
approach is focused on maintaining team cohesion and ide-
ally high-levels of performance by recommending the most
ideal candidate tominimize any disruption.

Having this in mind, many of the existing graph kernels
can be adopted in Eq. (1), such as random walk based graph
kernels, sub-tree based graph kernels (See Section 7 for a
review). In this paper, we focus on the random walk based
graph kernel [11] due to its mathematical elegancy and supe-
rior empirical performance. Given two labelled graphs
Gi :¼ fAi;Lig, i ¼ 1; 2, the random walk based graph kernel
between them can be formally computed as follows [11], [12]:

KerðG1;G2Þ ¼ y0ðI� cA�Þ�1L�x; (2)

where A� ¼ L�ðA01 �A02Þ is the weight matrix of the two
graphs’ Kronecker product, � represents the Kronecker
product between two matrices, c is a decay factor,
y ¼ y1 � y2 and x ¼ x1 � x2 are the so-called starting and
stopping vectors to indicate the weights of different nodes
and are set uniform in our case, L� is a diagonal matrix
where L�ði; iÞ ¼ 0 if the ith row of ðA01 �A02Þ is zeroed out
due to label inconsistency of two nodes of the two graphs. L�

can be expressed asL� ¼
Pl

k¼1 diagðL1ð:; kÞÞ � diag ðL2ð:; kÞÞ.

3.3 Computational Challenges

Eq.(2) naturally suggests the following procedure for solving
TEAM MEMBER REPLACEMENT problem (referred to as TEAMREP-
BASIC): for each individual j =2 T , we compute its score scoreðjÞ
by Eq.(2); and recommend the individual(s) with the highest
score(s). However, this strategy (TEAMREP-BASIC) is computa-
tionally intensive since we need to compute many random
walk based graph kernels and each of such computations
could be expensive especially when the team size is large. To
be specific, for a team T of size t and a graphGwithn individ-

uals and l skills in total, its time complexity isOðnlr0t3Þwhere
r0 is the effective rank of A� since we need to compute a ran-
domwalk based graph kernel for each candidatewho is not in

the current team, each of which could cost Oðlr0t3Þ [11]. Even
if we allow some approximation in computing each of these
graph kernels, the best known algorithms (i.e., by [12]) would

still give an overall time complexity as Oðnðlt2r4 þmrþ r6ÞÞ,
where r is reduced rank after low rank approximation, which
is still too high. For example, on the DBLP dataset with
916,978 authors, for a team with 10 members, it would take
6,388s to find a best replacement.

In the next section, we present our solution to remedy
these computational challenges.

4 TEAM MEMBER REPLACEMENT: SCALE-UP AND

SPEED-UP

In this section, we address the computational challenges to
scale up and speed up TEAMREP-BASIC. We start with an effi-
cient pruning strategy to reduce the number of graph kernel

computations, and then present three algorithms to speed-
up the computation of individual graph kernel.

4.1 Scale-Up: Candidate Filtering

Here, we propose an efficient pruning strategy to filter out
those unpromising candidates. Recall that one of our design
objectives for a good TEAM MEMBER REPLACEMENT is structural
matching, i.e., the new member has a similar network struc-
ture as team member p in connecting the rest team mem-
bers. Since p is connected to at least some of the rest
members, it suggests that if an individual does not have any
connection to any of the rest team members, s/he might not
be a good candidate for replacement.

Pruning Strategy: Filter out all the candidates who do not
have any connections to any of the rest team members.

Lemma 1 (Effectiveness of Pruning). For any two persons i
and j not in T , if i is connected to at least one member in T =p
and j has no connections to any of the members in T =p, we
have that

KerðGðT Þ;GðT p!iÞÞ � KerðGðT Þ;GðT p!jÞÞ:

Proof. Suppose that GðT Þ :¼ fA0;L0g. Let GðT p!iÞ :¼
fA1;L1g, andGðT p!jÞ :¼ fA2;L2g.

By Taylor expansion of Eq. (2), we have
KerðGðT Þ;GðT p!iÞÞ ¼

P1
z¼0 cy

0ðL�1ðA00 �A01ÞÞ
zx,

where L�1 ¼
Pl

k¼1 diagðL0ð:; kÞÞ � diagðL1ð:; kÞÞ,
KerðGðT Þ;GðT p!jÞÞ ¼

P1
z¼0 cy

0ðL�2ðA00 �A02ÞÞ
zx,

where L�2 ¼
Pl

k¼1 diagðL0ð:; kÞÞ � diagðL2ð:; kÞÞ.
Therefore, it is sufficient to show that ðL�1ðA00�

A01ÞÞ
z � ðL�2ðA00 �A02ÞÞ

z for any z > 0, where two matri-
ces A � B if Aij � Bij holds for all possible ði; jÞ. We
prove this by induction.

(Base Case of Induction) When z ¼ 1, we have

L�1ðA00 �A01Þ

¼
�Xl

k¼1
diagðL0ð:; kÞÞ � diagðL1ð:; kÞÞÞðA00 �A01

�

¼
Xl
k¼1

�
diagðL0ð:; kÞÞA00Þ � ðdiagðL1ð:; kÞÞA01

�
:

(3)

Because ðdiagðL1ð:; kÞÞA01Þ � ðdiagðL2ð:; kÞÞA02Þ, we
have L�1ðA00 �A01Þ � L�2ðA00 �A02Þ.

(Induction Step) Assuming ðL�1ðA00 �A01ÞÞ
z�1 �

ðL�2ðA00 �A02ÞÞ
z�1, we have that

ðL�1ðA00 �A01ÞÞ
z � ðL�2ðA00 �A02ÞÞ

z�1ðL�1ðA00 �A01ÞÞ
� ðL�2ðA00 �A02ÞÞ

z;

where the first inequality is due to the
induction assumption; and the second inequality is due
to the base case. This completes the proof. tu

Remarks. By Lemma 1, our pruning strategy is “safe”, i.e.,
it will not miss any potentially good replacements. In
the meanwhile, we can reduce the number of graph ker-
nel computations from OðnÞ to Oð

P
i2T =p diÞ, which is

sub-linear in n.
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4.2 Speedup Graph Kernel—Exact Approach

Here, we address the problem of speeding up the computa-
tion of an individual graph kernel. Let GðT Þ :¼ fA1;L1g
and GðT p!qÞ :¼ fA2;L2g, where A1;A2 are symmetric adja-
cency matrices of the two graphs.3 Without loss of general-
ity, let us assume that p is the last team member in T .
Compare A1 with A2, it can be seen that the only difference
is their last columns and last rows. Therefore, we can
rewrite A2 as A2 ¼ Ac þAd2, where Ac is A1 with its last
row and column being zeroed out, and the nonzero ele-
ments of Ad2 only appear in its last row and column reflect-
ing the connectivity of q to the new team. Notice that Ad2

has a rank at most 2, so it can be factorized into two smaller
matrices as Ad2 ¼ Et�2F2�t.

Denote diagðL1ð:; jÞÞ as L
ðjÞ
1 and diagðL2ð:; jÞÞ as L

ðjÞ
2 for

j ¼ 1; :::; l. Compare L
ðjÞ
1 with L

ðjÞ
2 , the only difference is the

last diagonal element. Therefore, we can write L
ðjÞ
2 as L

ðjÞ
2 ¼

LðjÞc þ L
ðjÞ
d2 , where LðjÞc is L

ðjÞ
1 with last element zeroed out,

and L
ðjÞ
d2 ’s last element indicates q’s strength of having the

jth skill. L
ðjÞ
2 ’s rank is at most 1, so it can be factorized as

L
ðjÞ
2 ¼ e

ðjÞ
t�1f

ðjÞ
1�t. Therefore, the exact graph kernel for the

labelled graph can be computed as:

KerðGðT Þ;GðT p!qÞÞ

¼ y0
�
I� c

�Xl
j¼1

L
ðjÞ
1 � L

ðjÞ
2

�
ðA01 �A02Þ

��1�Xl
j¼1

L
ðjÞ
1 � L

ðjÞ
2

�
x

¼ y0ðI� c

�Xl
j¼1

L
ðjÞ
1 � LðjÞc

�
ðA1 �AcÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Z: invariant w.r.t. q

� c

�Xl
j¼1
ðLðjÞ1 � eðjÞÞðI� fðjÞÞ

�
ðA1 �AcÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

PQðA1�AcÞ¼PY1

� c

�Xl
j¼1

L
ðjÞ
1 � LðjÞc

�
ðA1 � EÞðI� FÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
X1Y2

� c

�Xl
j¼1
ðLðjÞ1 � eðjÞÞðI� fðjÞÞ

�
ðA1 � EÞðI� FÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
X2Y2

Þ�1

�Xl
j¼1

L
ðjÞ
1 � L

ðjÞ
2

�
x:

(4)

Each L
ðjÞ
1 � eðjÞ is a matrix of size t2 by t and I� fðjÞ is a

matrix of size t by t2. We denote the matrix created by

concatenating all L
ðjÞ
1 � eðjÞ horizontally as P, i.e.,

P ¼ ½Lð1Þ1 � eð1Þ; . . . ;L
ðlÞ
1 � eðlÞ�; denote the matrix created by

stacking all I� fðjÞ vertically as Q, i.e., Q ¼ ½I� fð1Þ; . . . ;

I� fðlÞ�. Obviously, ð
Pl

j¼1ðL
ðjÞ
1 � eðjÞÞðI� fðjÞÞÞ is equal to

PQ. We denote ð
Pl

j¼1 L
ðjÞ
1 � LðjÞc ÞðA1 � EÞ by X1; denote

ð
Pl

j¼1ðL
ðjÞ
1 � eðjÞÞðI� fðjÞÞÞðA1 � EÞ by X2; denote QðA1�

AcÞ by Y1 and denote ðI� FÞ by Y2. Let X be ½P;X1;X2� and Y
be ½Y1;Y2;Y2�.

With these additional notations, we can rewrite Eq. (4) as

KerðGðT Þ;GðT p!qÞÞ ¼ y0ðZ� cXYÞ�1
Xl
j¼1

L
ðjÞ
1 � L

ðjÞ
2

 !
x

¼ y0ðZ�1 þ cZ�1XðI� cYZ�1XÞ�1YZ�1ÞXl
j¼1

L
ðjÞ
1 � LðjÞc

 !
xþ

Xl
j¼1
ðLðjÞ1 � eðjÞÞðI� fðjÞÞ

 !
x

 !
;

(5)

where the second equation is due to the matrix inverse
lemma [13].

Remarks. In Eq. (5), Z ¼ I� cð
Pl

j¼1 L
ðjÞ
1 � LðjÞc ÞðA1 �AcÞ

does not depend on the candidate q. Thus, if we pre-com-

pute its inverse Z�1, we only need to update XðI� cYZ�1

XÞ�1Y and PQx for every new candidate. Notice that com-
pared with the original graph kernel (the first equation in

Eq. (4)), ðI� cYZ�1XÞ is a much smaller matrix of
ðlþ 4Þt� ðlþ 4Þt. In this way, we can accelerate the pro-
cess of computing its inverse without losing the accuracy
of graph kernel.

4.3 Speedup Graph Kernel—Approx Approach

Note that the graph kernel by Eq. (5) is exactly the same as
the original method by the first equation in Eq. (4). If we
allow some approximation error, we can further speed-up
the computation.

Note thatAc is symmetric and its rank-r approximation can

bewritten as Âc ¼ UV, whereU is amatrix of size t by r andV
is a matrix of size r by t. A1 can be approximated as

Â1 ¼ Âc þAd1 ¼ UVþ E1F1 ¼ X1Y1, where X1 ¼ ½U;E1�;
Y1 ¼ ½V; F1�;E1 ¼ ½w1; s�; F1 ¼ ½s0;w01�, s is a zero vector of
length t except that the last element is 1, and w1 is the weight
vector from p to themembers in T . Similarly, after p is replaced
by a candidate q, the weight matrix of the new team can be

approximated as Â2 ¼ X2Y2 where X2 ¼ ½U; E2�;Y2 ¼
½V; F2�;E2 ¼ ½w2; s�; F2 ¼ ½s0;w02� and w2 is the weight vector
from q to the members in the new team. The approximated
graph kernel for labeled graphs can be computed as:

K̂erðGðT Þ;GðT p!qÞÞ ¼ yT ðI� cL�ðÂ01 � Â02ÞÞ
�1L�x

¼ y0ðI� cL�ðX1Y1Þ � ðX2Y2ÞÞ�1L�x
¼ y0ðI� cL�ðX1 � X2ÞðY1 � Y2ÞÞ�1L�x
¼ y0ðIþ cL�ðX1 � X2ÞMðY1 � Y2ÞÞL�x

¼ y0L�xþ cy0
�Xl

j¼1
L
ðjÞ
1 X1 � L

ðjÞ
2 X2

�
MðY1 � Y2ÞL�x

¼
�Xl

j¼1
ðy01L

ðjÞ
1 x1Þðy02L

ðjÞ
2 x2Þ

�
þ c

�Xl
j¼1

y01L
ðjÞ
1 X1 � y02L

ðjÞ
2 X2

�
M

�Xl
j¼1

Y1L
ðjÞ
1 x1 � Y2L

ðjÞ
2 x2

�
;

(6)

where M ¼ ðI� cð
Pl

j¼1 Y1L
ðjÞ
1 X1 � Y2L

ðjÞ
2 X2ÞÞ�1, the second

equation is due to the Kronecker product property; the third
equation is again due to the matrix inverse lemma, the fourth

3. Although we focus on the undirected graphs in this paper, our
proposed algorithms can be generalized to directed graphs.
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equation is bymatrix multiplication distributivity and the last
equation is due to the Kronecker product property.

Remarks. The computation of M is much cheaper than the
original graph kernel since it is a matrix inverse of size

ðrþ 2Þ2 � ðrþ 2Þ2. It was first proposed in [12] to explore
the low-rank structure of the input graphs to speed-up
graph kernel computations. However, in the context of
TEAM MEMBER REPLACEMENT, we would need to estimate
the low-rank approximation many times (Oð

P
i2T =p diÞ)

when we directly apply the method in [12]. In contrast,
we only need to compute top-r approximation once by
Eq. (6). As our complexity analysis (Section 4.5) and
experimental evaluations (Section 6.3) show, this brings a
few times additional speed-up.

4.4 Speedup Graph Kernel—Approximation with
Correspondence

In the above approaches, the starting and ending probabilities
x and y are assumed to be uniform by default. This implicitly
implies that the starting points for random walks on the two
team graphs could be any combinations. However, the node
correspondences between the two teams are already known.
For example, suppose the members in the old team are
T ¼ fa; b; cg and the new team after replacement becomes
T c!d ¼ fa; b; dg. Then a; b; c in the original team correspond
to a; b; d respectively in the new team. With the correspon-
dence known,we can only consider those randomwalks start-
ing from the correspondent nodes only. In the above example,
only random walks starting from ða; aÞ; ðb; bÞ; ðc; dÞ should be
considered. If we assign equal starting probabilities for the
correspondent starting nodes and zero for else, the starting
probability x can bewritten as:

x ¼ 1

t
½1; 0; 0; . . . ; 0|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

t

; 0; 1; 0; . . . ; 0|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
t

; . . . ; 0; 0; 0; . . . ; 1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
t

�0: (7)

Similarly, by the same reasoning, we get y ¼ x. The com-
putations in Eq. (6) can be further simplified as follows:

y0L�x ¼
1

t2

Xt
i¼1

Xl
j¼1

L
ðjÞ
1 ði; iÞ 	 L

ðjÞ
2 ði; iÞ

ðY1 � Y2ÞL�x ¼
1

t

Xt
i¼1

�Xl
j¼1

L
ðjÞ
1 ði; iÞ 	 L

ðjÞ
2 ði; iÞ

�
Y1ð:; iÞ � Y2ð:; iÞ

y0L�ðX1 � X2Þ ¼
1

t

Xt
i¼1

�Xl
j¼1

L
ðjÞ
1 ði; iÞ 	 L

ðjÞ
2 ði; iÞ

�
X1ði; :Þ � X2ði; :Þ:

(8)

The approximated graph kernel for labeled graphs with
node correspondence can be computed as:

K̂erðGðT Þ;GðT p!qÞÞ ¼ yT ðI� cL�ðÂ01 � Â02ÞÞ
�1L�x

¼ y0L�xþ cy0L�ðX1 � X2ÞMðY1 � Y2ÞL�x

¼ 1

t2

Xt
i¼1

Xl
j¼1

L
ðjÞ
1 ði; iÞ 	 L

ðjÞ
2 ði; iÞ þ

c

t2

�Xt
i¼1

�Xl
j¼1

L
ðjÞ
1 ði; iÞ 	 L

ðjÞ
2 ði; iÞ

�

X1ði; :Þ � X2ði; :Þ
�
M

�Xt
i¼1

�Xl
j¼1

L
ðjÞ
1 ði; iÞ 	 L

ðjÞ
2 ði; iÞ

�

Y1ð:; iÞ � Y2ð:; iÞ
�
:

(9)

Remarks. As shown in Eq. (8), the savings from the corre-
spondences come from the way y0L�x, ðY1 � Y2ÞL�x and
y0L�ðX1 � X2Þ are computed. For example, without corre-

spondence, computing ðY1 � Y2ÞL�x by
Pl

j¼1 Y1L
ðjÞ
1 x1�

Y2L
ðjÞ
2 x2 will take Oðlt2rþ lr2Þ in Eq. (6), but it only takes

Oðtlþ tr2Þ in Eq. (9).

4.5 Putting Everything Together

Putting everything together, we are ready to present our
algorithms for TEAM MEMBER REPLACEMENT. Depending on
the specific methods for computing the individual graph
kernels, we propose three variants.

4.5.1 Variant #1: TEAMREP-FAST-EXACT

We first present our algorithm using the exact graph kernel
computation in Eq. (5). The algorithm (TEAMREP-FAST-EXACT)
is summarized in Algorithm 1.We only need to pre-compute
and store Z�1, R, b and l for later use to compute each can-
didate’s score (step 2 and 3). In the loop, the key step is to
update M involving matrix inverse of size ðlþ 4Þt� ðlþ 4Þt
which is relatively cheaper to compute (step 17).

Algorithm 1. TeamRep-Fast-Exact

Input: (1) The entire social network G :¼ fA;Lg, (2) original
team members T , (3) person p who will leave the
team, (4) starting and ending probability x and y(be
uniform by default), and (5) an integer k (the budget)

Output: Top k candidates to replace person p
1: Initialize Ac;L

ðjÞ
1 ;L

ðjÞ
2 ; j ¼ 1; . . . ; l ;

2: Pre-compute Z�1  ðI� cð
Pl

j¼1 L
ðjÞ
1 � LðjÞc ÞðA1 �AcÞÞ�1;

3: Set R ð
Pl

j¼1 L
ðjÞ
1 � LðjÞc Þx; b yTZ�1R; l cyTZ�1;

4: for each candidate q inG after pruning do
5: Initialize s a zero vector of length t except the last ele-

ment is 1;
6: Initialize w weight vector from q to the new team’s

members;
7: Set E ½w; s�; F ½s0;w0� ;
8: Set eðjÞ  a t by 1 zero vector except the last element is 1,

for j ¼ 1; . . . ; dn ;
9: Set fðjÞ  a 1� t zero vector except the last element which

is label j assignment for q;
10: Set P andQ ;
11: Compute X1, X2 and Y1, Y2;
12: Set X ½P;X1;X2�;Y ½Y1;Y2;Y2�;
13: UpdateM ðI� cYZ�1XÞ�1;
14: Compute r0  Z�1PQx;
15: Compute scoreðqÞ ¼ bþ yT r0 þ lXMY ðZ�1Rþ r0Þ in Eq. (5);
16: end
17: Return the top k candidates with the highest scores.

The effectiveness and efficiency of TEAMREP-FAST-EXACT

are summarized in Lemma 2 and Lemma 3, respectively.
Compared with TEAMREP-BASIC, Algorithm 1 is much faster
without losing any recommendation accuracy.

Lemma 2. Accuracy of TEAMREP-FAST-EXACT. Algorithm 1 out-
puts the same set of candidates as TEAMREP-BASIC.

Proof. (Sketch) First, according to Lemma 1, we will not
miss a promising candidate during the pruning stage.
Second, for each candidate after pruning, Algorithm 1
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calculates its graph kernel exactly the same as Eq. (5),
which is in turn the same as Eq. (4) and hence Eq. (2).
Therefore, after ranking the scores, Algorithm 1 outputs
the same set of candidates as TEAMREP-BASIC. tu

Lemma 3. Time Complexity of TEAMREP-FAST-EXACT Algo-
rithm 1 takes Oðð

P
i2T =p diÞðlt5 þ l3t3ÞÞ in time.

Proof. (Sketch) After pruning, the number of potential can-
didates (the number of loops in Algorithm 1) is
Oð
P

i2T =p diÞ. In every loop, computing X1;X2 and Y1 take

Oðlt5Þ; computing M takes Oðlt5 þ l3t3Þ and computing

the score(q) takes Oðlt3Þ. Putting everything together, the
time complexity of Algorithm 1 is Oðð

P
i2T =p diÞ

ðlt5 þ l3t3ÞÞ. tu

4.5.2 Variant #2: TEAMREP-FAST-APPROX

By using Eq. (6) to compute the graph kernel instead, we
propose an even faster algorithm (TEAMREP-FAST-APPROX),
which is summarized in Algorithm 2. In the algorithm, we
only need to compute the top r eigen-decomposition for Ac

once (step 2), and use that to update the low rank approxi-
mation for every new team. Besides, when we update M, a

matrix inverse of size ðrþ 2Þ2 � ðrþ 2Þ2 (step 14), the time
is independent of the team size.

Algorithm 2. TeamRep-Fast-Approx

Input: (1) The entire social network G :¼ fA;Lg, (2) original
team members T , (3) person p who will leave the
team, (4) starting and ending probability x and y (be
uniform by default), and (5) an integer k (the budget)

Output: Top k candidates to replace person p

1: Initialize Ac;L
ðjÞ
1 ;L

ðjÞ
2 ; j ¼ 1; . . . ; l ;

2: Compute top r eigen-decomposition for Ac: ULU0  Ac ;
3: Set V LU0;
4: Initialize s a zero vector of length t except the last ele-

ment is 1;
5: Initializew1  weight vector from p to T ;
6: Set X1 and Y1 ;
7: for each candidate q inG after pruning do
8: Initialize w2  weight vector from q to the new team’s

members ;
9: Set X2 and Y2;
10: Compute S 

Pl
j¼1 y

0
1L
ðjÞ
1 X1 � y02L

ðjÞ
2 X2;

11: Compute T 
Pl

j¼1 Y1L
ðjÞ
1 x1 � Y2L

ðjÞ
2 x2Þ;

12: UpdateM ðI� cð
Pl

j¼1 Y1L
j
1X1 � Y2L

j
2X2ÞÞ�1;

13: Set scoreðqÞ using Eq. (6)
14: end
15: Return the top k candidates with the highest scores.

The effectiveness and efficiency of TEAMREP-FAST-APPROX

are summarized in Lemma 4 and Lemma 5, respectively.
Compared with TEAMREP-BASIC and TEAMREP-FAST-EXACT,
Algorithm 2 is even faster; and the only place it introduces
the approximation error is the low-rank approximation of
Ac (step 2).

Lemma 4. Accuracy of TEAMREP-FAST-APPROX. If Ac ¼ ULU0

holds, Algorithm 2 outputs the same set of candidates as TEAM-

REP-BASIC.

Proof. (Sketch) First, according to Lemma 1, we will not
miss a promising candidate during the pruning stage.
Second, for each candidate after pruning, if Ac ¼ ULU0,

we have that Ac ¼ Âc, A1 ¼ Â1, and A2 ¼ Â2. This means
when we compute the approximated graph kernel
using Eq. (6), the low rank approximations of A1 and
A2 is exactly the same as original A1 and A2. There-
fore, the scores calculated by Algorithm 2 are exactly
the same as Eq. (2), hence outputting the same set of
candidates. tu

Lemma 5. Time Complexity of TEAMREP-FAST-APPROX Algo-
rithm 2 takes Oðð

P
i2T =p diÞðlt2rþ r6ÞÞ in time.

Proof. (Sketch) After pruning, the number of potential can-
didates (the number of loops in Algorithm 2) is

Oð
P

i2T =p diÞ. In every loop, computing T takes Oðlt2rþ
lr2Þ; computing M takes Oðlt2rþ lr4 þ r6Þ and computing

the score(q) takes Oðlt2 þ r4Þ. Putting everything together,
we have that the time complexity of Algorithm 2 is

Oðð
P

i2T =p diÞðlt2rþ r6ÞÞ. tu

Remarks. Considering that Lj
1 and Lj

2 are diagonal matrices,

computingM can be further reduced to Oðltr2 þ lr4þ r6Þ.

4.5.3 Variant #3: TEAMREP-FAST-APPROXCORR

The algorithm for computing the approximated graph ker-
nel with node correspondences as in Eq. (9) is summarized
in Algorithm 3. Compared with TEAMREP-FAST-APPROX, the
difference is that the starting and ending probabilities take
form in Eq. (7), which will allow simplified computation in
Eq. (8) (step 12-14).

Algorithm 3. TeamRep-Fast-ApproxCorr

Input: (1) The entire social network G :¼ fA;Lg, (2) original
team members T , (3) person p who will leave the
team, and (4) an integer k (the budget)

Output: Top k candidates to replace person p
1: Initialize Ac;L

ðjÞ
1 ;L

ðjÞ
2 ; j ¼ 1; . . . ; l ;

2: Compute top r eigen-decomposition for Ac: ULU0  Ac ;
3: Set V LU0;
4: Initialize s a zero vector of length t except the last ele-

ment is 1;
5: Initializew1  weight vector from p to T ;
6: Set X1 and Y1;
7: for each candidate q inG after pruning do
8: Initialize w2  weight vector from q to the new team’s

members ;
9: Set X2 and Y2;
10: Compute b 1

t2

Pt
i¼1
Pl

j¼1 L
ðjÞ
1 ði; iÞ 	 L

ðjÞ
2 ði; iÞ;

11: Compute S 
Pt

i¼1 ð
Pl

j¼1 L
ðjÞ
1 ði; iÞ	 L

ðjÞ
2 ði; iÞÞX1ði; :Þ � X2

ði; :Þ;
12: Compute T 

Pt
i¼1ð

Pl
j¼1 L

ðjÞ
1 ði; iÞ	 L

ðjÞ
2 ði; iÞÞY1ð:; iÞ � Y2

ð:; iÞ;
13: UpdateM ðI� cð

Pl
j¼1 Y1L

j
1X1 � Y2L

j
2X2ÞÞ�1;

14: Set scoreðqÞ ¼ bþ c
t2
SMT;

15: end
16: Return the top k candidates with the highest scores.

The effectiveness and efficiency of TEAMREP-FAST-
APPROXCORR are summarized in Lemma 6 and Lemma 7,
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respectively. Compared with TEAMREP-FAST-APPROX, Algo-
rithm 3 is much faster and outputs the same set of candi-
dates if the starting and ending probabilities take form in
Eq. (7).

Lemma 6. Accuracy of TEAMREP-FAST-APPROXCORR. If the
starting and ending probabilities take form in Eq. (7), Algo-
rithm 3 outputs the same set of candidates as Algorithm 2.

Proof. (Sketch) Note the only difference between TEAMREP-
FAST-APPROXCORR and TEAMREP-FAST-APPROX is that the
starting and ending probabilities take form in Eq. (7) in
TEAMREP-FAST-APPROXCORR. According to Eq. (9), the
approximated graph kernel score is the same as output
by Eq. (6). tu

Lemma 7. Time Complexity of TEAMREP-FAST-APPROXCORR

Algorithm 3 takes Oðð
P

i2T =p diÞðltr2 þ r6ÞÞ in time.

Proof. (Sketch) After pruning, the number of potential can-
didates (the number of loops in Algorithm 3) is
Oð
P

i2T =p diÞ. In every loop, computing T takes

Oðtlþ tr2Þ; computing M takes Oðltr2 þ lr4 þ r6Þ and

computing the score(q) takes Oðlt2 þ r4Þ. Putting every-
thing together, we have that the time complexity of Algo-

rithm 3 is Oðð
P

i2T =p diÞðltr2 þ r6ÞÞ. tu

We summarize and compare the proposed algorithms in
Table 2.

5 BEYOND TEAM MEMBER REPLACEMENT: TEAM
REFINEMENT, TEAM EXPANSION AND TEAM
SHRINKAGE

In this section, we discuss how the techniques for TEAM

MEMBER REPLACEMENT can be applied to the other team
enhancement scenarios, including TEAM REFINEMENT, TEAM

EXPANSION and TEAM SHRINKAGE. We note that the fast sol-
utions developed in Section 4 also apply to these scenar-
ios, and thus omit the detailed discussions.

5.1 TEAM REFINEMENT

In TEAM REFINEMENT, we want to edit a current team
member p to have the desired skill l and communication
structure vector a. As the person with the exact skill and
communication requirements might not exist in the net-
work, we aim to find a best-effort match. We define a
‘virtual member’ v to be the person with skill l and net-
work structure a and a ‘virtual team’ T 0 to be T p!v.
Using graph kernel, the best-effort match q can be
found as:

q ¼ argmaxj;j =2 T KerðGðT 0Þ;GðT 0v!jÞÞ: (10)

5.2 TEAM EXPANSION

In TEAM EXPANSION, we want to add a team member with the
desired skill l and communication structure vector a. Again,
because the exact match might not exist, we instead find a
best-effort match. We define a ‘virtual member’ v to be the
person with skill l and network structure a and a ‘virtual
team’ T 0 to be fT ; vg. Using graph kernel, the best-effort
match q can be found as:

q ¼ argmaxj;j =2 T KerðGðT 0Þ;GðT 0v!jÞÞ (11)

5.3 TEAM SHRINKAGE

In TEAM SHRINKAGE, we want to remove a current team mem-
ber with minimum disruption. Since graph kernel can char-
acterize the team-level similarity, it can also be applied to
TEAM SHRINKAGE. The idea is to find a current team member
p so that the new team after p leaves is most similar to the
old team. That is, we want to find a member p 2 T such that:

p ¼ argmaxj2T KerðGðT Þ;GðT =jÞÞ; (12)

where GðT =jÞ is the labelled team graph after a team mem-
ber j leaves. Note that in TEAM SHRINKAGE, the search space
is no longer the rest network but the team itself, which is
much smaller.

6 EXPERIMENTAL EVALUATIONS

In this section, we present the experimental evaluations.
The experiments are designed to answer the following
questions:

� Effectiveness: How accurate are the proposed algo-
rithms for TEAM ENHANCEMENT?

� Efficiency: How scalable are the proposed
algorithms?

6.1 Datasets

DBLP. DBLP dataset4 provides bibliographic information on
major computer science journals and proceedings. We use it
to build a co-authorship network where each node is an
author and the weight of each edge stands for the number
of papers the two corresponding authors have co-authored.
The network constructed has n ¼ 916; 978 nodes and
m ¼ 3; 063; 244 edges. We use the conferences (e.g., KDD,
SIGMOD, CVPR, etc) to reflect authors’ skills (e.g., data min-
ing, data base, computer vision, etc) and for a given author and
conference, we define his/her skill level as the percentage
of the papers s/he publishes in that conference. For a given
paper, we treat all of its co-authors as a team. Alternatively,

TABLE 2
Comparison of Proposed Algorithms

Algorithm Time Complexity Remark

TEAMREP-BASIC Oðnlr0t3Þ Direct graph computations
TEAMREP-FAST-EXACT Oðð

P
i2T =p diÞðlt5 þ l3t3ÞÞ Pruning + smoothness

TEAMREP-FAST-APPROX Oðð
P

i2T =p diÞðlt2rþ r6ÞÞ Pruning + smoothness + low-rank approximation

TEAMREP-FAST-APPROXCORR Oðð
P

i2T =p diÞðltr2 þ r6ÞÞ Pruning + smoothness + low-rank approximation + node correspondence

4. http://arnetminer.org/citation
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if a set of authors co-organize an event (such as a confer-
ence), we also treat them as a team.

Movie. This dataset5 is an extension of MovieLens dataset,
which links movies from MovieLens with their correspond-
ing IMDb webpage and Rotten Tomatoes review system. It
contains information of 10,197 movies, 95,321 actors/actress
and 20 movie genres (e.g., action, comedy, horror, etc.). Each
movie has on average 22.8 actors/actresses and 2.0 genres
assignments. We set up the social network of the actors/
actresses where each node represents one actor/actress and
theweight of each edge is the number ofmovies the two link-
ing actors/actresses have co-stared.We use themovie genres
that a person has played as his/her skills. For a given movie,
we treat all of its actors/actress as a team.

NBA. The NBA dataset6 contains NBA and ABA statistics
from the year of 1946 to the year of 2009. It has information
of 3,924 players and 100 teams season by season. We use
players’ positions as their skill labels, including guard, for-
ward and center. The edge weight of the player network
stands for the number of seasons that the two correspond-
ing nodes/individuals played in the same team.

The statistics of these three datasets are summarized in
Table 3. All the experiments are run on a Windows machine
with 16 GB memory and Intel i7-2760QM CPU.

Repeatability of Experimental Results. All the three datasets
are publicly available. We will release the code of the pro-
posed algorithms through authors’ websites.

6.2 Effectiveness Results

Recall that we have two design objectives for our TEAM MEM-

BER REPLACEMENT problem, including both the skill match and
the structural match. Our effectiveness evaluations focus on
the following two aspects. First, we examine whether simul-
taneously considering both design objectives outperform
only considering one of them. Second, we evaluate to what
extent our graph kernel formulation outperforms other alter-
native choices, in order to fulfill both design objectives (i.e.,
the skill match and the structural match). To be specific, we
compare to the following alternative methods, including (a)
only with structure matching and not including L� in Eq. (2)
(Graph Only), (b) only with skill matching and using cosine
similarity of skill vectors as scores (Skill Only), (c) computing
the score from the euclidean distance of skill vectors (Skill
euclideanDist), (d) using theweighted sum of scores by ‘Skill
Only’ and ‘Graph Only’ (Linear Combination), (e) using the
multiplication of the two (Multiplicative Combination), and
(f) first picking those with high ‘Skill Only’ scores and then
ranking them by ‘GraphOnly’ scores (Sequential Filtering).

A. Qualitative Evaluations. We first present some case
studies on the three datasets to gain some intuitions.

Case Studies on DBLP. Let us treat the organizing commit-
tee of KDD 2013 as a team. After filtering those not in DBLP,
we have 32 people in the committee team. We use their co-
authorship network as their social network. Suppose one of
the research track co-chairs Inderjit Dhillon becomes unavail-
able and we are searching for another researcher who can fill
in this critical role in organizing KDD 2013. The top five can-
didates our algorithm recommends are in Table 4. The
results are consistent with the intuitions - all of these recom-
mended researchers are highly qualified - not only have they
made remarkable contributions to the data mining field, but
also they have strong ties with the remaining organizers of
KDD 2013. For example, Liu is the current chair of KDD exec-
utive committee; Wang is one of the research track program
chairs for KDD 2014; and Faloutsos was the PC co-chair of
KDD 2003, etc.We also develop a prototype system to visual-
ize the teams before and after replacement. For details,
please refer to our conference version of the paper [5].

Case Studies on Movie. Assuming actor Matt Damon
became unavailable when filming the epic war movie Saving
Private Ryan (1998) and we need to find an alternative actor
who can play Ryan’s role in the movie. The top five recom-
mendations our algorithm gives are in Table 4. As we know,
Saving Private Ryan is a movie of action and drama genres.
Notice that both Damon and Jackson have participated in
many movies of drama, thriller and action genres, hence Jack-
son has the acting skills required to play the role in this
movie. Moreover, Jackson has co-played with Tom Sizemore,
Vin Diesel, Dale Dye, Dennis Farina, Giovanni Ribisi and Ryan
Hurst in the crew before. The familiarity might increase the
harmony of filming themovie with others.

Case Studies on NBA. Let us assume that Kobe Bryant in
Los Angeles Lakers was hurt during the regular season in
1996 and a bench player is badly wanted. The top five
replacements our algorithm recommends can be seen in
Table 4. As we know, Bryant is a guard in NBA. Among the
five recommendations, Kidd, Shaw and Lue all play as
guards. More importantly, Jason, Brian and Tyronn have
played with 9, 7 and 9 of the rest team members on the
same team in the same season for multiple times. Therefore,
it might be easier for them to maintain the moment and
chemistry of the team which is critical to winning the game.

Case Studies on TEAM EXPANSION. Suppose we want to
expand the organizing committee of KDD 2013 by hiring a
researcher with strong expertise in Artificial Intelligence,
and preferably who has collaborated with as many
researchers on the committee as possible. The top five can-
didates found by our algorithm are: Qiang Yang, Zoubin
Ghahramani, Eric Horvitz, Thomas G. Dietterich and Raymond
J. Mooney. All the candidates have made significant contri-
butions to the field of artificial intelligence and Yang, Hor-
vitz, Dietteirch and Mooney are the current AAAI fellows.
Among them, Yang has collaborated with some previous
KDD organizing committee members (e.g., Jian Pei, Ying Li,
Geoff Webb and Dou Shen).

B. Quantitative Evaluations. Besides the above case stud-
ies, we also perform quantitative evaluations.

User Studies. We perform a user study with 20 people as
follows. We choose 10 papers from various fields, replace
one author of each paper, run our method and the first two
comparison methods, and each of them recommends top

TABLE 3
Summary of Datasets

Data n m # of teams

DBLP 916,978 3,063,244 1,572,278
Movie 95,321 3,661,679 10,197
NBA 3,924 126,994 1,398

5. http://grouplens.org/datasets/hetrec-2011/
6. http://www.databasebasketball.com
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five candidates. Then, we mix the outputs (15 recommenda-
tions in total) and ask users to (a) mark exactly one best
replacement; (b) mark all good replacements from the list of
15 recommended candidates. The results are presented in
Fig. 1, Fig. 2 and Fig. 3, respectively. As we can see from
these figures, the proposed method (the green bar) is best in
terms of both precision and recall. For example, the average
recalls by our method, by ‘Graph Only’ and by ‘Skill Only’
are 55, 28, 17 percent, respectively. As for different papers,
our method wins 9 out of 10 cases, except for ‘paper 2’
where ‘Skill Only’ is best. One possible reason for the excep-
tion is that in ‘paper 2’ [14], all the authors are primarily in
computer vision while the person leaving (Prof. Han) is
mostly focused in data mining. As a result, using our

method and Graph Only will bias towards those candidates
in computer vision; while the recommendations made by
Skill Only are more preferred by the users.

Author Alias Prediction. In DBLP, some researchers might
have multiple name identities/alias. For example, in some
papers, Alexander J. Smola might be listed as Alex J. Smola,
Zhongfei (Mark) Zhang might be listed as Zhongfei Zhang, etc.
For such an author, we run the team replacement algorithm
on those papers s/he was involved to find top-k replace-
ment. If his/her other alias appears in the top-k recom-
mended list, we treat it as a hit. The average accuracy of
different methods is shown in Fig. 4. Again, our method
performs best. It outperforms both the methods that

Fig. 1. The average recall, average precision and R@1 of the three com-
parison methods. Higher is better.

Fig. 2. Recall for different papers. Higher is better.

TABLE 4
Case Studies Results

Dataset Method Recommendations

DBLP Ours Philip S. Yu, Jiawei Han, Christos Faloutsos, Bing Liu andWei Wang
Graph Only Jian Wu, Ada Wai-Chee Fu, Ke Wang, Heikki Mannila, Daxin Jiang
Skill Only W. Nick Street, Kristin P. Bennett, David Gondek, Bianca Zadrozny, Katsuhiko Takabayashi
Multiplicative Combination David Gondek, Katsuhiko Takabayashi, Jeremy Z. Kolter, Hung Hay Ho, Genady Grabarnik

Movie Ours Samuel L. Jackson, Steve Buscemi, Robert De Niro, Christopher Walken, Bruce Willis
Graph Only Tommy Lee Jones,Woody Harrelson, Stanley Tucci, Nicky Katt, Juliette Lewis
Skill Only Chris Cooper, Clive Owen, Gig Young, Stellan Skarsgrd, Brad Hunt
Multiplicative Combination Gig Young, Brad Hunt, Adrien Brody, Danny Huston, Faye Dunaway

NBA Ours Rick Fox, A.c. Green, Jason Kidd, Brian Shaw and Tyronn Lue
Graph Only Rick Fox, A.c. Green, Chucky Brown,Michael Finley, Jason Kidd
Skill Only Mahmo Abdul-rauf, Tariq Abdul-wahad, Forest Able, Alex Acker, Donald Ackerman
Multiplicative Combination Mahmo Abdul-rauf, Forest Able, Alex Acker, Donald Ackerman, Hassan Adams

Fig. 3. Precision for different papers. Higher is better.

Fig. 4. Average accuracy versus budget k. Higher is better.
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consider only one design objective (‘Skill Only’, ‘Graph
Only’ and ‘Skill euclideanDist’); and also those that use
alternative ad-hoc methods to combine both skill and struc-
tural match (‘linear combination’, ‘multiplicative
combination’ and ‘sequential filtering’).

Team Shrinkage. In DBLP, we select teams with over 10
members and manually inject a “noisy” individual to the
team such that the individual is connected with all the team
members with random edge weights and has randomly
generated skill vectors. Recall that, in team shrinkage we
want to find the “best” member to leave the team without
much disruption to the team. In our setting, we treat the
“noisy” individual as the “best” candidate. For “Skill Only”,
we first compute the similarity matrix among all team mem-
bers using inner product of their skill vectors and then
apply max-pooling as their score. Fig. 6 shows the result of
our method, “Graph Only” as well as “Skill Only”. Our
method achieves the best Precision@1, Recall@1 and F@1.

6.3 Efficiency Results

A. The Speed-Up by Pruning. To demonstrate the benefit of
our pruning strategy, we run TEAMREP-BASIC with and with-
out pruning on the three datasets and compare their run-
ning time. For DBLP, we choose the authors of paper [15] (6
authors); for Movie, we select the film crew of Titanic (1997)
(22 actors/actresses); for NBA, we pick the players on the

Los Angeles Lakers in year 1996 (17 players). The result is
presented in Fig. 5. As we can see, the pruning step itself
brings significant savings in terms of running time, espe-
cially for larger graphs (e.g., DBLP and Movie). Notice that
according to Lemma 1, we do not sacrifice any recommen-
dation accuracy by pruning.

B. Further Speedup. Next, we vary the team sizes and com-
pare the running time of TEAMREP-BASIC with TEAMREP-FAST-
EXACT(exact methods); and Ark-L [12] with TEAMREP-FAST-
APPROX and TEAMREP-FAST-APPROXCORR(approximate meth-
ods). For TEAMREP-BASIC and Ark-L, we apply the same prun-
ing step as their pre-processing step. The results onDBLP are
presented in Fig. 7 and Fig. 8, respectively.We can see that the
proposed TEAMREP-FAST-EXACT and TEAMREP-FAST-APPROX are
much faster than their alternative choices, especially when
team size is large. Besides, knowing the node correspond-
ences, TEAMREP-FAST-APPROXCORR can achieve additional
speed-up compared to TEAMREP-FAST-APPROX. Notice that
Ark-L is the best known method for approximating random
walk based graph kernel.

C. Scalability. To test the scalability of our TEAMREP-FAST-
EXACT, TEAMREP-FAST-APPROX and TEAMREP-FAST-APPROXCORR

algorithms, we sample a certain percentage of edges from
the entire DBLP network and run the two proposed algo-
rithms on teams with different sizes. The results are pre-
sented in Figs. 9, 10 and 11, respectively. As we can seen, all

Fig. 5. Time Comparisons before and after pruning on three datasets.
Notice time is in log-scale.

Fig. 6. Precision@1, Recall@1 and F@1 of the three comparison meth-
ods for TEAM SHRINKAGE. Higher is better.

Fig. 7. Time Comparison between TEAMREP-BASIC and TEAMREP-FAST-
EXACT. TEAMREP-FAST-EXACT is on average 3� faster. TEAMREP-BASIC

takes more than 10 hours when team size = 70.

Fig. 8. Time Comparisons between Ark-L [20] and TEAMREP-FAST-
APPROX, TEAMREP-FAST-APPROXCORR.
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algorithms enjoy a sub-linear scalability w.r.t. the total num-
ber of edges of the input graph (m).

7 RELATED WORK

In this section, we review the related work in terms of (a)
team formation, (b) recommendation and expert finding,
and (c) graph kernel.

Team Formation. Team formation studies the problem of
assembling a team of people to work on a project. To ensure
success, the selected team members should possess the
desired skills and have strong team cohesion, which is first
studied in [2]. As follow-up work, Anagnostopoulos et
al [3] studies forming teams to accommodate a sequence of
tasks arriving in an online fashion and Rangapuram et al [4]
allows incorporating many realistic requirements into team
formation based on a generalization of the densest subgraph
problem. With the presence of the underlying social net-
work, the set cover problem is complicated by the goal of
lowering the communication cost at the same time. Cao et
al [16] develop an interactive group mining system that
allows users to efficiently explore the network data and
from which to progressively select and replace candidate
members to form a team. Bogdanov et al [17] studies how to
extract a diversified group pulled from strong cliques given
a network; this ensures that the group is both comprehen-
sive and representative of the whole network. Cummings
and Kiesler [8] find that prior working experience is the best
predictor of collaborative tie strength. To provide insights
into designs of online communities and organizations, the

systematic differences in appropriating social softwares
among different online enterprise communities is analyzed
in [18]. The patterns of informal networks and communica-
tion in distributed global software teams using social net-
work analysis is also investigated in [19]. Specific
communication structures are proven critical to new prod-
uct development delivery performance and quality [9]. To
assess the skills of players and teams in online multi-player
games and team-based sports, “team chemistry” is also
accounted for in [20], [21]. Along another line, recently
some work aim at predicting the long term performance of
a team [22], [23].

Recommendation and Expert Finding. Recommendation
and expert finding is a very active research topic in data
mining and information retrieval, either to recommend
products a user is mostly interested in or to identify the
most knowledgeable people in a field. Our work is related
to this in the sense that we aim to recommend top candi-
dates who are most suitable for the vacancy. A popular
method in recommendation (collaborative filtering) is latent
factor model [24], [25], [26]. The basic idea is to apply
matrix factorization to user-item rating data to identify the
latent factors. The factorization technique can be naturally
extended by adding biases, temporal dynamics and varying
confidence levels. In question-answering sites, e.g., Quora
and Stack Overflow, an important task is to route a newly
posted question to the ‘right’ user with appropriate exper-
tise and several methods based on link analysis have been
proposed [27], [28], [29]. In academia, identifying experts in
a research field is of great value, e.g., assigning papers to
the right reviewers in a peer-review process [30], [31], which
can be done by either building the co-author network [15] or
using language model and topic-based model [32], [33]. For
enterprises, finding the desired specialist can greatly reduce
costs and facilitate the ongoing projects. Many methods
have been proposed to expert search through an organ-
ization’s document repository [34], [35].

Graph Kernel. Graph kernel measures the similarity
between two graphs. Typical applications include auto-
mated reasoning [36], bioinformatics/chemoinformatics
[37], [38]. Generally speaking, graph kernels can be catego-
rized into three classes: kernels based on walks [10], [11],
[39], [40], [41], kernels based on limited-sized sub-
graphs [42], [43], [44] and kernels based on subtree pat-
terns [45], [46], [47]. Graph kernels based on random walk is

Fig. 9. Running time of TEAMREP-FAST-EXACT versus graph size. TEAMREP-
FAST-EXACT scales sub-linearly w.r.t. the number of edges of the input
graph.

Fig. 10. Running time versus graph size. TEAMREP-FAST-APPROX scales
sub-linearly w.r.t. the number of edges of the input graph.

Fig. 11. Running time versus graph size. TEAMREP-FAST-APPROXCORR

scales sub-linearly w.r.t. the number of edges of the input graph.
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one of the most successful choices [48]. The idea is to per-
form simultaneous walks on the two graphs and count the
number of matching walks. One challenge of random walk
based graph kernel lies in computation. The straight-for-
ward method for labelled graphs take Oðlr0t3Þ time by
reducing to the problem of solving a linear system [10], [11].
With low rank approximation, the computation can be fur-
ther accelerated with high approximation accuracy [12].

8 CONCLUSION

In this paper, we study a family of problems under the
umbrella of TEAM ENHANCEMENT, namely, TEAM MEMBER

REPLACEMENT, TEAM REFINEMENT, TEAM EXPANSION and TEAM

SHRINKAGE. To our best knowledge, we are the first to study
these problems related to teams in large-scale networks.
The basic idea of our method is to adopt graph kernel to
encode both skill matching and structural matching. To
address the computational challenges, we propose a suite of
fast and scalable algorithms. Extensive experiments on real
world datasets validate the effectiveness and efficiency of
our algorithms. To be specific, (a) by bringing skill matching
and structural matching together, our method is signifi-
cantly better than the alternative choices in terms of both
average precision (24 percent better) and recall (27 percent
better); and (b) our fast algorithms are orders of magnitude
faster while enjoying a sub-linear scalability.

This paper has presented an efficient technique in address-
ing the team enhancement challenge; however, the proposed
method can be applied to general graph mining problem
where the interaction of multiple objectives is critical, e.g.,
finding a similar multimedia object by considering both its
content and relationship with other objects. In the future, we
would like to expand teamenhancement to teamcomposition.
For instance, given the structure of a high-grossing movie
(e.g., Saving Private Ryan) of a particular genre, we want to
develop an effective algorithm to suggest a teamof actors.
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