MobiSeg: Interactive Region Segmentation Using
Heterogeneous Mobility Data

Nan Caof
Tongji University

Wenchao Wu, Yixian Zheng*
Hong Kong University of
Science and Technology

SOHO Square

Haipeng Zeng, Bing Ni, Huamin Qu*

Lionel M. Ni#
Hong Kong University of University of Macau

Science and Technology

Sun. 12-2 pm

China UnionPay

Pudong New Area, Shanghai

Figure 1: The visualization of region segmentation for Pudong New Area (h) in Shanghai during three time periods generated using MobiSeg:
(a) 8-10 am on Monday; (b) 6-8 pm on Monday; (c) 12-2 pm on Sunday. By comparing three segmentation results and embedded activity glyphs,
we identified two residential areas (a2, a3) as well as a CBD (a1) with shopping malls (b1) and official blocks (b4). The segmentation results

were further verified by comparing to Baidu Street View (d-g).

ABSTRACT

‘With the acceleration of urbanization and modern civilization, more
and more complex regions are formed in urban area. Although un-
derstanding these regions could provide huge insights to facilitate
valuable applications for urban planning and business intelligence,
few methods have been developed to effectively capture the rapid
transformation of urban regions. In recent years, the widely applied
location-acquisition technologies offer a more effective way to cap-
ture the dynamics of a city through analyzing people’s movement
activities based on mobility data. However, several challenges ex-
ist, including data sparsity and difficulties in result understanding
and validation. To tackle these challenges, in this paper, we pro-
pose MobiSeg, an interactive visual analytics system, which sup-
ports the exploration of people’s movement activities to segment
the urban area into regions sharing similar activity patterns. A joint
analysis is conducted on three types of heterogeneous mobility data
(i.e., taxi trajectories, metro passenger RFID card data, and telco
data), which can complement each other and provide a full picture
of people’s activities in a region. In addition, advanced analyti-
cal algorithms (e.g., non-negative matrix factorization (NMF) based
method to capture latent activity patterns, as well as metric learn-
ing to calibrate and supervise the underlying analysis) and novel
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visualization designs are integrated into our system to provide a
comprehensive solution to region segmentation in urban areas. We
demonstrate the effectiveness of our system via case studies with
real-world datasets and qualitative interviews with domain experts.

1 INTRODUCTION

A well developed modern city usually consists of different regions
such as residential areas, shopping districts and official blocks, sup-
porting different needs of its citizens. To best utilize limited re-
sources and resolve urban issues such as traffic congestions, ur-
ban planners spend tremendous efforts in planning and construct-
ing these regions. However, most of the time, the formation of an
urban region cannot be fully controlled, but rather naturally formed
by people’s life styles and daily activities. Fortunately, the increas-
ing availability of human mobility data generated within urban con-
text provides unprecedented opportunities for understanding these
spontaneously formed activity-oriented regions (activity region for
short) by characterizing people’s movement activities, such as when
people move in/out a region and how long they stay. A deeper un-
derstanding of these activity regions could enable more precise ur-
ban planning and facilitate many valuable applications. Yet despite
its importance, little work has been done to capture and understand
regional dynamics in a city, which is our focus in this paper.

There has been prior work studying mobility patterns in ur-
ban context based on various types of data such as taxi trajectory
data [10][11], public transportation data [22][38], mobile phone
data [8][33], and social media data [30]. However, none of them
can effectively capture the dynamic formation of regions in an ur-
ban area. Yuan et al. [37] introduced a technique to segment an ur-
ban area into functional regions based on places of interests (POI)
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and latent activity trajectories, which is the most relevant technique
to our work. However, their method can only produce a static seg-
mentation result whose semantics are interpreted merely based on
statistics of POI data.

In this paper, we introduce MobiSeg, the first visual analytics
system, to the best of our knowledge, designed for capturing the
dynamic formation of activity regions by characterizing people’s
movement activities (i.e., move in/out, stay). This system deals
with heterogeneous mobility data collected from different sources
to segment an urban area into regions based on a detailed analysis
of people’s movement activity patterns (activity pattern for short)
via non-negative matrix factorization (NMF) and supervised cluster
analysis. Instead of interpreting the analysis results based on statis-
tics of POI data, MobiSeg facilitates an interpretation by showing
the results in novel visualization views to leverage users’ domain
knowledge and experience. Based on metric learning and interac-
tive visualizations, users can supervise the underlying segmentation

procedure. In particular, this paper has the following contributions:
e Visualization. We propose a novel texture map to visualize

activity regions and corresponding activity patterns based on
voronoi tessellations and stacked elliptical activity glyphs.

e Analysis. We introduce an NMF-based method to capture la-
tent activity patterns inside a focal area based on heteroge-
neous mobility data, and segment the area into activity regions
through interactive clustering of local districts with similar ac-
tivity patterns based on metric learning.

e System. We develop a novel visual analytics system leverag-
ing advanced analysis algorithms and visualization techniques
to detect activity regions and support an interactive explo-
ration from different perspectives.

2 RELATED WORK
2.1 Human Mobility Data Sources

With the increasing availability of location acquisition technolo-
gies, human mobility data become ubiquitous within urban context.
An extensive amount of efforts has been made to develop effective
methods to understand and analyze such kind of data for urban com-
puting [39][40]. In this part, we briefly review recent representative
work in the field of visualization.

Among various human mobility data, taxi data is one of the most
popular data types. For example, Liu et al. [18] analyzed route
diversity based on taxi data for route recommendations. Wu et
al. [34] used taxi data for exploring a variety of boundaries of a
one-hour reachable area in downtown under different traffic condi-
tions. Wang et al. [32] presented a visual analytics system for the
analysis of patterns in traffic congestions based on taxi trajectories.
Apart from taxis, public transportation systems also play an impor-
tant role in modern cities. Therefore, data collected from public
transportation systems is also frequently used to understand human
mobility in an urban area [22][36][38]. For instance, Palomo et
al. [22] proposed a visual analytics system, TR-EX, to study sub-
way services based on transportation schedules. Zeng et al. [38]
looked into interchange patterns to reveal passenger redistribution.
In addition, more and more recent researches [8][33] introduced
mobile phone data into urban analysis. For example, Di Lorenzo
et al. [8] presented AllAboard that analyzed mobile phone data to
help city authorities visually explore urban mobility and optimize
public transport. Wu et al. [33] developed a visual analytics system,
TelCoVis, to explore co-occurrence in human mobility using a type
of all-in-one mobile phone data, called telco data. Moreover, there
are also a few studies based on other data types, including social
media data [5][30] and surveillance videos [21].

However, the analysis results based on human mobility data are
usually limited by data quality, which is an important issue pointed
out in many studies [5][33]. In particular, taxi and public trans-
portation data have limited coverage of population, and these peo-
ple usually take taxi or public transportation only a few times a

day, thus making the data very sparse. In contrast, mobile phone
data or telco data are relatively denser and enjoy a wider population
coverage, which is desired in urban analysis. However, people’s lo-
cations recorded in telco data are usually discretely determined by
cell stations. In another word, data’s granularity highly depends on
the distribution of cell stations in an area, which is a major draw-
back of this type of data. To overcome the limitations, in our work,
we choose to fuse data from multiple sources across time and space
to help capture a full picture of people’s activities in an urban area.

2.2 Region Segmentation Methods

Region segmentation has been studied in the fields of GIS and urban
planning for years. In most of previous work, the remote-sensing
techniques were employed. For example, Deng et al. [7] and Seto
et al. [28] conducted comparative analyses of satellite images of
cities to classify regions based on land coverage. Puissant et al. [24]
further examined spectral and textural approaches to improve the
classification accuracy. All these techniques are based on visual
differences of regions in satellite images, yet fail to provide fine-
grained region segmentations of urban area, especially for modern
cities nowadays with complex geomorphic environments.

There are also a few studies trying to conduct region segmenta-
tion based on people’s activities. As early as 1970, Goddard [12]
presented a case study on functional regions within central London
using surveyed data of taxi flows. Based on many existing studies
about people’s activities within a focal region [6][23][25], Yuan et
al. [37] creatively proposed a technique to segment regions based
on people’s movement. In particular, their algorithm detects com-
muting patterns among regions via LDA, which is a topic modeling
technique originally used for text analysis, and groups local districts
sharing similar patterns together as a functional region. The analy-
sis module of MobiSeg is inspired by this technique but overcomes
three major limitations. First, although Yuan’s method can seg-
ment an urban area based on commuting patterns among regions, it
would be hard for users to understand or interpret segmentation re-
sults without a prior knowledge of these regions. Yuan tried to pro-
vide semantics of each region by inferring regional functions based
on the number of different types of POIs in each region, while the
number of POIs is not a region’s intrinsic representation. Although
singular value decomposition (SVD) is applied, it does not tackle
the problem thoroughly without considering the scale/size of POlIs.
In our system, instead of relying on the statistics of POI data, we
employ different methods to segment regions based on a set of ex-
tracted time-oriented mobility patterns, enabling analysts to lever-
age their knowledge for a better interpretation. In addition, we use
heterogeneous mobility data collected from multiple sources which
can complement each other to ensure a comprehensive analysis.
Second, in MobiSeg, based on advanced visualization designs and
metric learning, analysts can adjust segmentation results and super-
vise the underlying analysis procedure interactively which cannot
be supported by Yuan’s work. Third, Yuan’s method produces static
analysis results which can hardly be updated in real time, while our
method enables flexible explorations of different time periods or
areas via online region segmentation and dynamic result updating.

2.3 Visualization of Mobility Data

Visualization techniques of mobility data can be categorized into
three major types [1], including direct depiction [15][29], sum-
marization [14][33] and pattern extraction [41][42]. In particular,
the direct depiction techniques present paths of movement directly,
while summarization techniques present movement based on statis-
tical calculations, whose basic idea is to aggregate movements after
dividing spatial and temporal domains into space compartments and
time intervals. Moreover, pattern extraction techniques support an
intuitive discovery and analysis of various movement patterns. In
this paper, we take advantage of different types of techniques to ad-



dress a challenging issue, dynamic region segmentation, which has
not received much attention in the field of visualization.

3 SYSTEM DESIGN AND OVERVIEW

MobiSeg is a visual analytics system designed to segment an ur-
ban area through a comprehensive analysis of patterns hidden in
mobility data collected from multiple sources within urban context.
It should divide regions where people have different patterns into
different parts and enable a flexible exploration based on varying
patterns during different time intervals. These general goals can be
compiled into the following detailed technical requirements:

T1. Data Fusion. The system should fuse heterogeneous mobility
data from different sources to enhance the analysis reliability.

T2. Feature Extraction. A set of features should be extracted to
capture people’s activities properly and comprehensively.

T3. Pattern Detection. Based on the extracted features, the sys-
tem should be able to identify patterns to facilitate region seg-
mentation by grouping local districts with similar patterns.

T4. Result Interpretation. The system should assist analysts to
better understand the semantics of segmentation results, so
that they can efficiently leverage their domain knowledge and
experience to address practical problems.

T5. Dynamic Updating. A real-time interactive exploration
should be enabled, allowing users to calibrate segmentation
results and supervise underlying analyses.

With the above requirements in mind, we propose the system
framework of MobiSeg as shown in Fig. 2. The system first di-
vides the urban area into a set of small local districts and fuses the
heterogeneous mobility data based on their innate spatial and tem-
poral information (T1). Five mobility features, including staying
and moving in/out a local district by metro or taxi, are then ex-
tracted and defined as people’s activities (T2). After that, for each
local district, dramatic changes of feature values are detected and
the representative ones are ranked out as activity events. Then NMF
is employed to find correlated activity events which are defined as
activity patterns (T3). Finally, the system groups local districts
sharing similar activity patterns together, thus forms activity re-
gions as segmentation results. In the system, both activity regions
and detected activity patterns are shown in visualization views to
facilitate an intuitive result interpretation (T4). After data fusion
and feature extraction, our system can run in real time, enabling
a dynamic updating of analysis results. Based on metric learning
and interactive visualizations, users can adjust the detected activity
regions iteratively to supervise the analysis procedure (TS5).

4 REGION SEGMENTATION VIA ACTIVITY ANALYSIS

In this section, we briefly describe five key steps for dividing an
urban area into activity regions.

4.1 Data Fusion

Our system integrates the following three types of mobility data:

Taxi data. Taxi data consist of a series of GPS records of over
10,000 taxis in Shanghai, China, with around 80 million records per
day. Each sampling point of a trajectory contains a record of time,
position (latitude and longitude) and status (occupied / vacant).

Metro passenger RFID card data. Metro passenger RFID
card data (metro data for short) record passengers’ journeys in the
Shanghai metro system. Passengers use their personalized RFID
cards to tap on card readers at metro station entries to go in/out of
stations. The card readers record every “tap in/out” action. Our
data contain around 12 million records per day.

Telco data. Telco data contain all data exchange records be-
tween each mobile phone and cell station when mobile phone users
make calls, send messages or connect to the Internet. In this work,
we extract useful information from each record of the telco data
collected in Shanghai, including an encrypted unique mobile phone

id, a timestamp, a cell station id and its corresponding location in
the form of < longitude,latitude >. The data contain records of
about 2.6 million users on 75,039 cell stations mapped to 10,118
unique locations covering most of the urban area.

In order to fuse these three types of data, we first partition an
urban area into local districts. An effective partition should be able
to preserve the distribution of data. Among different types of data
described above, taxi data and metro data are generated based on
transportation system (i.e., road and metro network), and their spa-
tial coverage is limited, making them unsuitable for local district
partition. In contrast, telco data, whose cell stations are usually
placed according to the distribution of population, have a much bet-
ter spatial coverage. Therefore, a natural approach is to cluster cell
stations by spatial proximity, and use the centers of groups as seed
points to compute a voronoi tessellation of the urban area. Here,
we adopt a non-parametric clustering algorithm introduced by An-
drienko et al. [2], which not only takes data density into account
but also provides a flexible mechanism enabling a precise control
of the spatial extend of a district. The resulting voronoi cells corre-
spond to local districts, based on which the data fusion is conduced
according to innate spatio-temporal relationships of these data, and
generates a heterogeneous multidimensional dataset.

4.2 Feature Extraction

The feature extraction process condenses the complex data down to
relevant information [19], consisting of two major steps.

We first calculate five raw features to capture people’s activities
within each local district during a given time interval, which are
summarized as follows:

o Taxi-in/ Taxi-out: measures the total number of people arrive
at / depart from a local district during a time interval based on
the number of taxi drop-offs / pick-ups recorded in taxi data.

e Metro-in / Metro-out: measures the total number of people
arrive at / depart from a local district during a time interval
based on the number of passengers exit / enter the metro sta-
tion (tap-out / tap-in action) recorded in metro data.

e Telco-stay: measures the number of people stay at a local
district during a time interval based on telco data.

Then we employ kernel density estimation (KDE) [31] to smooth
the features to capture people’s activities more properly. In most of
the case, the real starting point or final destination of a trip may
be different from a taxi’s pick-up/drop-off point or a tap-in/tap-out
metro station that we can obtain from a mobility dataset. Take the
feature metro-in as an example, when people arrive at a metro sta-
tion, they usually have to walk for some distance to get to the final
destination. As suggested by the domain experts, this phenomenon
should be taken into consideration for a more proper description of
people’s activities. Thus, we employ KDE to estimate the impact
of people who arrive at a metro station on the nearby local districts.
The nearer the district to the metro station, the higher probability
that people will go there after leaving from the metro station. The
same holds for other three features (i.e. metro-out and taxi-in/out).
Formally, given n points (i.e., pick-up/drop-off points of taxis or
tap-in/tap-out stations of metro) pi,p»,..., pn, We estimate the in-
tensity of the k-th feature (k = 1,2,3,4) of the j-th district using a
kernel density estimator, defined as:

()= =y k(i
)= LKD)
where d;; is the distance from p; to the j-th district, & is the band-
width and K(-) is the kernel function whose value decays with the
increasing of d;;. In our case, the Gaussian kernel is selected:
K ( ) - \/2?6)6]7 ( 2 h2

2
d; j 1 d; 3 )
h

where the bandwidth / is determined via MISE criterion [31].
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Figure 2: System framework. After data fusion and feature extraction, MobiSeg can support interactive region segmentation in real-time.

The final five features extracted at different time form a feature
vector time-series, characterizing people’s activities over time.

4.3 Activity Event Detection

In this step, we first detect dramatic value changes of each feature
over time through peak detection to capture major activities occur-
ring in each local district and reduce the influences of data noises.
Then we rank out the most representative ones as activity events to
help categorize each district.

Among many peak detection techniques, we adopt the algorithm
introduced in [20] which has a similar application scenario. In par-
ticular, this algorithm first bins the mobility features of each local
district into a histogram. A smaller bin size leads to a higher tempo-
ral granularity but more influences by data noises. Thus, we choose
5 minutes in our implementation. After that, a sliding time window
is used to calculate the change of data variance and mean over time,
which helps to reveal peaks in the time series (one hour in our im-
plementation to alleviate the influences of insignificant peaks and
best fit the time scale of our analysis). The output is a series of seg-
ments of time series recording the forming and releasing of peaks
regarding to a specific mobility feature.

When applied to real datasets, tens of thousands of peaks are
detected from different local districts in a day. Therefore, it is nec-
essary to identify representative ones to differentiate each local dis-
trict from others. To this end, we employ “Term Frequency - Inverse
Document Frequency” (TF-IDF) [26] that is commonly used in text
analysis, given the similarity of the problem to be solved. In partic-
ular, TF-IDF reflects how important a word is for a document in a
collection or corpus in terms of clearly differentiating the document
from others. Specifically, a word having a high TF-IDF score in a
document indicates it has and only has high frequencies in the focal
document, thus can be used to characterize the document properly.
A local district can also be characterized by the extracted peaks in
a similar statistic approach. Here, the whole urban area can be re-
garded as a document collection containing a set of local districts,
which are treated as documents. In addition, a detected peak of a
feature within a district corresponds to a word in a document. Based
on this conceptual mapping, we are able to use TF-IDF to estimate
the importance of each peak detected at a local district to help find
out the most representative ones as activity events that best differ-
entiate the district from others.

It is worth mentioning that unlike a word in a document, the
frequency of a peak, recorded in a time-series, is difficult to be cal-
culated given it is almost impossible to find out two peaks that are
exactly the same. To address this issue, we employ dynamic time
warping (DTW) [3] to estimate the similarity of peaks, which pro-
vides a flexible matching within a predefined time window (£ 15
minutes in our implementation to fit the time scale of our analysis).
Then we cluster similar peaks together and use the mean curve of
these peaks to replace the raw curves. The peak value of the mean
curve indicates an average amount of people move in/out or stay at
a local district, thus is used as the frequency for TF-IDF.

4.4 Latent Activity Pattern Analysis

Activity events capture the elementary semantics of people’s activ-
ities in a local district such as a crowd flows in or out of the district
at sometime. However, it is necessary to understand the correla-
tions of these events, such as which events occur simultaneously or
in sequence, so that a higher level of semantics of activities can be
implied. For example, regular activity events, representing a large
number of people flow into several local districts every morning
and leave late in the afternoon, are likely to imply the function of
related local districts (i.e., official blocks). Therefore, in this step,
we detect such kinds of correlated activity events as latent activity
patterns for an in-depth analysis.

Again, we analogize our problem to text analysis: the analysis
of activity patterns based on activity events occurring in local dis-
tricts is just like the analysis of topics based on words in documents.
This analogy also brings an additional benefit that fits the reality of
region segmentation for real world applications. It models com-
plicated cases when multiple activity patterns occur simultaneously
within the same district under different probability. Just like in topic
analysis, a document may contain different topics. Here, we em-
ploy NMF [35] to detect latent activity patterns due to its simplicity
and high efficiency compared to traditional topic models such as
LDA [4], which facilitates pattern interpretation and real-time inter-
actions. In particular, we first formalize activity events in the focal
urban area by an n X m event matrix A, where n is the total num-
ber of local districts, m is the total number of activity events, and
A(i, j) indicates the frequency of event j occurring in the local dis-
trict i. Then A is decomposed into two matrices through NMF, i.e.,
A =W x H by minimizing the squared error (or Frobenius norm):

min||A —W x H||%

Here, W is an n x k matrix indicating the probability of k activity
patterns occurring in each local district, where k is an input parame-
ter controlling the number of latent activity patterns to be detected.
Particularly, k£ can be estimated by a term-centric stability analysis
strategy [13] or set by users for certain applications. H is a k x m
matrix that describes each latent activity pattern based on m activity
events. In another word, W captures the high-level semantics of ac-
tivities in each local district based on latent activity patterns whose
details can be interpreted by H.

4.5 Local District Clustering

Based on W, we cluster local districts sharing similar activity pat-
terns to form activity regions via metric learning [17] which es-
timates the similarity between each pair of districts in the feature
space. Specifically, we calculate the distance metric as follows:

D(w;j,wj) = \/(w,- ij)TM(W,' —wj)
where w; is the i-th row of W indicating the i-th local district in
the urban area. M is the mapping matrix which is learned by mini-
mizing the distances between the districts within the same clusters
(denoted by S), while separating the districts belonging to different
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(a) Global Map View provides an overview of the entire mobility dataset for global

exploration and enables flitering in both spatial and temporal domains; (b) Inspection View illustrates region segmentation results and support a
general understanding of activities in these regions; (c) Detail View visualizes mobility feature vector time series of local districts for an in-depth
investigation and comparison, and (d) Activity Pattern View facilitates interpretation of extracted latent activity patterns based on NMF.

clusters (denoted by D). Formally, M is learned by optimizing the
following objective function:

min Z (wi —=wj)TM(w;i —w;)
(i,))es
S.t.
M >0, Z (Wi—Wj)TM(W,‘—Wj)Zl
(i,j)eD

In our implementation, the activity regions are first calculated by
clustering local districts based on Euclidean distance. The initial re-
sult is then visualized and users can edit region boundaries to adjust
the results based on their observations and judgements. Their revi-
sions produce a set of constraints S and D which are then used in
the metric learning procedure described above to refine the distance
metric D(w;, w;) iteratively.

5 USER INTERFACE AND VISUALIZATION
5.1 Design Rationale

To design the user interface and corresponding visualization views
of MobiSeg, we conducted multiple design sessions with three do-
main experts who have long-term experiences on analyzing urban
data. Two of them are project managers in a big IT company, and
the third is an analyst from an urban planning bureau in Shanghai,
China. These experts also held regular meetings with end-users like
urban planners and urban administrators. We discussed with these
experts about demands in their work. The extensive discussions
gradually led to a set of key design requirements as follows:

R1. Showing the data overview. The data used in our sys-
tem is huge in amount, heterogeneous in nature, and contains both

geospatial and temporal information. Hence, analysts need a simple
visualization view that is able to summarize data into an overview
to help quickly capture the distribution of data.

R2. Supporting easy exploration and filtering of raw data.
The number of records in the mobility data is in the scale of tens of
millions. It will be helpful if the analysis scope can be reduced in
advance. Therefore, it is important to design a flexible mechanism
to help users explore raw data and retrieve their interested parts
easily, thus enabling an efficient interactive online analysis.

R3. Facilitating inter-region comparisons. Another key to un-
derstand the formation of activity regions is the capability to dif-
ferentiate regional activities. Hence, the system should facilitate an
efficient comparison via a symbolic representation of activities.

R4. Interpreting activity patterns from different aspects.
Having a comprehensive understanding of the semantics of activity
patterns is important to interpret region segmentation results. Thus,
the system should present extracted activity patterns to let analysts
get a general idea of these patterns from different aspects, such as
what activity events are contained, when they occurs, how long they
last, and how significant they are.

RS5. Enabling flexible adjustment of analysis results. The de-
sign of visualization views and corresponding interactions should
be carefully coordinated to enable an efficient adjustment of region
segmentation results by collecting users’ feedbacks to supervise the
underlying analysis procedure.

5.2 User Interface

As shown in Fig. 3, the user interface of MobiSeg consists of four
major coordinated views, including (1) the Global Map View illus-
trating the urban area to be studied, the partition of local districts,
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as well as the overall spatio-temporal distribution of activity events
(R1), so as to guide users to choose a subset of data of their interest
for further exploration (R2); (2) the Inspection View, a voronoi-
based texture map, illustrating region segmentation results in a fo-
cal area and supporting a general understanding of activities in these
districts via elliptical glyphs (R3); (3) the Activity Pattern View fa-
cilitating interpretation of latent activity patterns detected based on
NMF (R4); and (4) the Detail View visualizing details of activities
in a local district to facilitate an in-depth comparison (R3). These
views are interactively linked, showing different activity context of
the focal area for a comprehensive analysis (RS).

5.2.1

MobiSeg provides an overview of the entire mobility dataset
through the Global Map View (Fig. 3(a)). It combines a map and a
timeline plot together to support an efficient exploration and filter-
ing of data from both spatial and temporal domains. In particular, in
the timeline view, a stacked bar chart is employed to visually sum-
marize the varying number of activity events of different types (i.e.,
metro-in/out, taxi-in/out, and telco-stay) in the urban area overtime,
which provides an intuitive visual guide for filtering of data by time
(e.g., 8-9 am). Our system also allows users to make a linear time
selection of days (e.g., Monday). In addition, the map not only
shows the geo-information of the focal area, but also presents the
local districts that are generated as described in Section 4.1. These
local districts are hidden in the map by default to ensure a clear
presentation of spatial context such as the labels of different roads.
Moreover, users can further activate a heatmap layer which shows
the spatial distribution of activity events. Based on the information
provided, users can brush to choose an area on the map, then the
corresponding local districts will be highlighted and corresponding
data will be loaded for further exploration.

Global Exploration and Filtering

5.2.2

After global exploration and filtering, MobiSeg enables a closer
inspection of the focal area selected by users through two views,
namely the Inspection View and Detail View. These two views vi-
sualize region segmentation results and illustrate regional activities
to offer an intuitive understanding and interpretation. Specifically,
as shown in Fig. 3(b), the Inspection View displays a voronoi-based
texture map where each voronoi cell represents a local district. A
stacked elliptical glyph embedded in each cell summarizes people’s
activities of five types, which forms a texture and enables a fast
comparison across different local districts. An activity region, as
a cluster of local districts sharing similar activity patterns, is thus
visualized as a set of voronoi cells through the Inspection View.
Furthermore, the Detail View (Fig. 3(c)) shows activities in a cer-
tain district by visualizing the feature vector time-series extracted
in Section 4.2 and facilitates a detailed comparative analysis. The
visualization techniques are described as follows:

(I) Visualizing Regional Activities

To understand segmentation results, we present people’s activi-
ties in each local district. Two approaches are provided to visualize
regional activities at different scales.

Activity Glyph. First, an activity glyph is embedded in the In-
spection View to support a general understanding and comparison
of activities in different local districts by visualizing corresponding
feature values. Our first prototype is implemented using tiny bar
charts. Although the simplicity makes it easier for interpretation,
the limited size undermines the efficacy of this design. Thus, we
come up with a stacked elliptical glyph design in which each eclipse
encodes two related features from the same data source respectively
via eclipse’s two axes. Specifically, as shown in Fig. 4, we encode
“taxi-in” and “taxi-out” in one ellipse and “metro-in” and “metro-
out” in another ellipse with one axis (called in-axis) showing the
total number of “in” activities and the other axis (called out-axis)

Inspecting Segmentation Result
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Figure 4: Activity glyph, a stacked elliptical glyph design, embedded
in the Inspection View to support a general understanding and com-
parison of activities in different local districts.

showing the total number of “ouf” activities. The feature value of
“telco-stay” is shown in the third ellipse with both two axes show-
ing the same value (as there is only one feature extracted from this
source), thus making it a circle. The color intensity of each ellipse
encodes the difference between its two axes which is normalized to
the range of [0,1]. These ellipses are stacked together forming an
integrated elliptical glyph. Here, to facilitate an intuitive compari-
son through shape, we put the circular one, i.e., the one represents
“telco-stay” in the middle, wrapped by the elliptical ones layer by
layer. The orientation of the glyph indicating by a white pointer in
the middle, encodes the angle distance between the glyph’s feature
vector and the mean feature vector across the entire focal area. Note
that the pointer is aligned along the “in-axis”. Thus, by observing
the directions indicated by pointers , users can compare the similar-
ity of activities in local districts intuitively. In summary, the shape
and size of the glyph enable a general understanding of activities
in a number of local districts, while users can zoom in to observe
other features of glyph for an in-depth comparison. Note that, when
users zoom in, a white border of each ellipse will be evoked to help
diifferentiate ellipses of three data sources.

Detail View. MobiSeg further integrates a Detail View to show
feature vector time series extracted in a certain local district, which
provides low-level information for users to validate the results and
conduct a detailed comparative analysis. In this design, we employ
a circular time axis for an intuitive visual metaphor. Moreover, to
show the time series, we adopt horizon graph, a timeline visualiza-
tion technique shown to be effective in a limited space [16][27]. In
particular, as shown in Fig. 5, the time series of each feature is vi-
sualized as a horizon-graph along the circular time axis, illustrating
changes of feature values over time in a clock-wise order. Each ex-
tracted peak representing an activity event is marked by an arc (in-
dicating its time range) and a small circle (showing the peak point).
Based on this design, when users click on a cell of the texture map
in the Inspection View, representing a local district, a series of cir-
cular horizon graphs will be generated in the Detail View. When
multiple cells are selected, corresponding horizon-graphs will be
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Figure 5: The Detail View visualizes feature vector time series ex-
tracted in a certain local district through a series of circular horizon
graphs to facilitate detailed analysis and comparison.



visualized in a grid (Fig. 3(c)), facilitating a pair-wise compari-
son. Horizon graphs can also be transformed into a circular stacked
graph, so that users can easily compare different local districts via
their shapes. However, this circular design suffers difficulties when
comparing inner and outer segments. We further discussed with
our domain experts. Based on their feedbacks, they like the circu-
lar design due to its compactness and capability to serve as a more
aesthetic visual signature of each local district for a wide audience.
Meanwhile, they acknowledge the drawback, thus our system en-
ables users to switch to a horizontal time axis for fair comparisons.

(II) Visualizing Local District

In order to enable a closer investigation and interpretation of seg-
mentation results, we adopt a composite design (i.e., an activity
glyph embedded in each voronoi cell) to show people’s activities
within each local district. To facilitate comparisons, we employ the
centroid voronoi tessellation to produce voronoi cells with an ap-
proximately equal size, so that activity glyphs can be visualized at
the same scale. Meanwhile, the relative positions of voronoi cells
should be preserved in the Inspection View so that users can ob-
serve the original voronoi tessellation in the Global Map View side
by side to be aware of the spatial context. Here, we adopt an al-
gorithm introduced in [9], whose basic idea is to iteratively place
the seed of each voronoi cell into the center of mass and recom-
pute the tessellation based on new positions until all seeds are sta-
bilized. Although changed gradually, this layout procedure may
break the original structure of local districts, making the previously
connected districts disconnected, thus producing a misleading view.
To tackle this problem, we optimize the following objective func-
tion while computing the centroid voronoi tessellation:

miny. el||X; — Gil|* + (1 - a)||x; — X/||>

where X; is the screen coordinates of a seed, C; is the center of
mass of the corresponding cell at the current iteration, and X; is the
original position of the seed defined by the center of the cell station
cluster before optimization. The first term in the objective tries
to place a seed to the center of mass and the second term tries to
preserve the original structure. ¢ € (0,1) is a parameter balancing
between these two terms. We found set @ = 0.8 gave the best results
in our implementation.
(I11) Visualizing Activity Regions

An activity region can be presented as a set of connected voronoi
cells on the texture map in the Inspection View. To differentiate an
activity region from others, we strengthen the boundary of corre-
sponding voronoi cells. Beyond a single activity region, those activ-
ity regions with similar activity patterns also need to be identified.
Thus, background colors are utilized to visually categorize them.

5.2.3

To enable a high-level interpretation of the region segmentation re-
sults, analysts want to have a comprehensive understanding of the
semantics of activity patterns so as to make further adjustment ac-
cordingly. As described in Section 4.4, activity patterns can be de-
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Figure 6: Event glyph design with trapezoid-metaphor to visualize
feature peaks representing activity events of latent activity patterns.

scribed by sequences of activity events as calculated in the matrix
H based on NMF. Therefore, we propose the design of the Activ-
ity Pattern View in the form of a matrix to sort all these sequences
into a linear order, enabling a convenient exploration. As shown in
Fig. 3(d), the rows of the matrix correspond to sequences of ac-
tivity events representing different latent activity patterns, while
the columns correspond to activity events at different time inter-
val. Each activity event, as described in Section 4.3, is the aver-
age of a cluster of similar feature peaks. Instead of showing orig-
inal curves directly, we visualize each activity event based on a
trapezoid-metaphor (Fig. 6) to facilitate an easier comparison by
encoding statistical information of the corresponding peak cluster
on an event glyph. Particularly, the bottom width and height of
glyph are proportional to the width and height of the original peak.
The top width of the glyph is controlled by a parameter ¢ that in-
dicates the significance of the peak (i.e., peakness) ranging from 0
(the least significant) to 1 (the most significant). The center posi-
tion of the top edge encodes the skewness S of the underlying time
series curves. Color intensity is further used to encode the probabil-
ity of the event’s occurrence in each pattern, corresponding to the
value in matrix H.

5.3 Interactions

We provide users with rich interactions to navigate through data for
a comprehensive analysis. Besides typical interactions like filtering
and brushing, MobiSeg also supports the following interactions:
Configuration: Users can configure our system to choose fea-
tures as well as parameters for region segmentation, and switch be-
tween alternative designs to support different analytical tasks.
Linking: The system supports automatic linking among the four
proposed views for an in-depth analysis. For example, if users dou-
ble click a voronoi cell of interest in the Inspection View, the related
activity patterns will be ordered according to their relevance to the
corresponding local district and shown in the Activity Pattern View.
Zooming and Panning: Zooming and panning are supported in
the Global Map View, Inspection View and Activity Pattern View
to explore a large set of data items. For example, in some cases,
due to the large number of activities occurring during a short time,
there might be overlaps among event glyphs in the Activity Pattern
View, then users can scroll the mouse wheel to zoom and drag the
mouse to pan so as to have a closer look of different activity events.
Snapshot: To facilitate a convenient comparison, a snapshot
function is provided in the Inspection View and a clipboard is
shown on the right side to record. By hovering over a clipboard
box, the snapshot will be magnified, thus enabling users to browse
their previous findings and make further comparisons easily.
Adjusting: Functionality is provided for adjusting segmentation
results in the Inspection View. Users can add or eliminate bound-
aries to adjust the coverage of an activity region and the overall
clustering result will be updated based on metric learning.

6 EVALUATION

To evaluate the effectiveness and usefulness of MobiSeg, we con-
duct in-depth interviews with four domain experts invited by our
collaborators, including two senior R&D engineers from the re-
search department of a big IT company (Expert A and B) and two
analysts from an urban planning bureau in Shanghai (Expert C and
D). In this section, we first describe two use cases developed based
on the interviews, and then report their comments on MobiSeg.

6.1 Case Studies

From the discussions with our domain experts, we derived several
using scenarios. In this section, we take two representative use
cases as examples to demonstrate how MobiSeg can help analysts
explore activity regions of a city and deal with various analytical
tasks. The mobility datasets we used here include taxi data, metro
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passenger RFID card data and telco data collected on April 5-6,
2015 in Shanghai, China. The data fusion and feature extraction
take about 2.4 hours, then our system can run in real time.

6.1.1 Region Segmentation of Pudong New Area

Expert C from an urban planning bureau in Shanghai participated
in the first case study and attempted to use MobiSeg for interactive
region segmentation to explore activity regions formed in Shanghai
during on different days (i.e., April 5(Sunday) and 6 (Monday)).
Based on the Global Map View, Expert C first chose 8-10 am on
April 6 which were morning peak hours on Monday with more ac-
tivity events. Then the heat map layer was activated and Expert
C further brushed an urban area covering the main part of Pudong
New Area (Fig. 1(h)). An initial segmentation result was generated
in the Inspection View (Fig. 7a). Based on his prior knowledge on
the local district highlighted with a black arrow in Fig. 7a, Expert C
merged it into the nearby pink region, then the whole segmentation
result were updated (Fig. 7b). Then the brown region embedded in
the pink region (highlighted with a black circle in Fig. 7b) caught
his attention. After a side-by-side observation of that region in the
Global Map View and Inspection View, Expert C decided to merge
it into the pink region as well. In this way, Expert C finally got a
satisfied region segmentation result as shown in Fig. 1(a). In this
result, a large region in pink (marked with al) and two small re-
gions in yellow (marked with a2 and a3) can be observed. All three
regions contain large activity glyphs indicating more activities in
these regions, which he found worth further exploration. Mean-
while, Region a2 and a3 are in the same color and embedded with
glyphs of similar shapes and orientations, indicating they share sim-
ilar activity patterns. By observing the shape of elliptical activity
glyphs, he found those glyphs in Region al have a longer “in-axis”,
meaning that more people arrived in this region during morning
peak hours on Monday. In contrast, those glyphs in Region a2 and
a3 have a quite different shape with a longer “out-axis”, indicating
more people left during that time period. Thus he inferred that Re-
gion al was likely to be an official block, while Region a2 and a3
were probably residential areas.

® ®

Figure 7: Adjustment of segmentation results for 8-10 am on April 6.

For further analysis, Expert C changed the time period to 6-
8 pm on Monday and applied a similar analyzing process. Fig. 1(b)
shows the newly generated segmentation result. In addition to Re-
gion b2 and b3 corresponding to Region a2 and a3 in the morning,
he found that Region al split into two parts (marked with b1 and
b4). By observing the shape of activity glyphs, he was surprised
to find there were still more people arrived in Region b1 during 6-
8 pm on Monday, while people started to leave Region b4 during
that time period. Thus, Expert C further inferred there might be
shopping malls in Region b1 where people went for dinner. To val-
idate this hypothesis, another segmentation result (Fig. 1(c)) of the
same area was generated for a time period of 12-2 pm on Sunday
(April 5). Region c1 corresponding to Region b1 in the previous
segmentation result was immediately identified with activity glyphs
of similar shape and dark color, indicating more people arrived in
this region, while Region b4 almost disappeared. These observa-
tions confirmed his hypothesis that Region b1 and b4 form a CBD
in Pudong New Area with shopping malls located in Region b1.

Finally, these results were compared with Baidu Street View !,
which we contend as a form of ground truth. We show a few street
views in Region b1, b4, b2 and b3, corresponding to shopping
malls (Fig. 1(d)), office buildings (Fig. 1(f)) and two residential
areas (Fig. 1(e)(g)), which verified Expert C’s analysis.

6.1.2 Use Case: Facilitate Marketing

In this use case, we demonstrate how users can use MobiSeg to
deal with analytical tasks in real world applications. As suggested
by Expert A and B, we applied our system to a task to facilitate
marketing, which was an application scenario our domain experts
worked on recently. Specifically, they were working for the mar-
keting department of a start-up company in Shanghai whose major
products were smart bicycles. The company would like to adver-
tise their products and encourage green commuting through road
shows, but only had a limited amount of funding. Therefore, our
experts should help the marketing team to selectively spend money
at proper places and at proper time to attract the most attention. To
this end, our experts tried to use MobiSeg to help them understand
the dynamics of activity patterns at different places, so as to decide
when and where the road shows should be arranged.

After loading the mobility data of Shanghai into the system, they
queried to analyze people’s activities in a downtown area of Shang-
hai on a weekday (i.e., Monday, April 6). The system automatically
identified and illustrated latent activity patterns in the Activity Pat-
tern View. For a more targeted advertising, the experts explored the
extracted activity patterns and investigated detailed activity events
at different time, so as to choose those patterns implying potential
customers of their smart bicycles. Their criteria of selection are as
follows: 1) Patterns with more activity events are wanted indicat-
ing regions with more active people who tend to travel in the city
rather than stay at a fixed place; 2) Among five types of activity
events, patterns with more “taxi-in” and “taxi-out” are preferred,
which are likely to imply deficiencies of public transportation in
such regions, thus smart bicycles would be needed. Based on these
two criteria, they deliberately chose five patterns with more taxi
related activity events (indicated by red and orange event glyphs
in Fig. 8) whose occurring time was relatively staggered, in order
to leave enough preparation time for road shows at different places.
Those red and orange event glyphs were with high color opacity, in-
dicating high probabilities of such events’ occurrence. In addition,
another reason for the experts choosing these patterns was due to
their interpretability, as they thought patterns with semantics were
more reliable. In particular, as shown in Fig. 8, pattern 0 and 2 im-
ply commuting activities by taxis during morning and evening peak
hours, while pattern 3 and 4 imply entertaining activities by taxis
after work in the evening, and pattern 1 implies activities during
lunch break. Based on the chosen patterns, the segmentation results
were updated in the Inspection View (Fig. 3(b)). Five types of re-
gions (i.e., clusters of local districts) were generated and shown in
different colors. By observing the embedded activity glyphs, they
found pink and green regions with small glyphs indicating less ac-
tivities in those regions. Thus, they focused on regions in other
three colors and picked three districts with relatively large activity
glyphs as candidates (b1, b2 and b3 in Fig. 3(b)).

After that, the experts wanted to see detailed features to under-
stand activities in these three candidate districts and fix specific time
for road shows. Thus, by clicking on the corresponding voronoi
cells in the Inspection View, the Detail View for each cell was gen-
erated respectively (c1 for b1, ¢2 for b2, ¢3 for b3). By observ-
ing the red and orange horizon graphs in Fig. 3(c1-c3), obvious
peaks for taxi-in (red) and taxi-out (orange) can be found in dif-
ferent time period (marked by black boxes). In specific, the peaks

IThe street view service of Baidu Maps (map.baidu.com) is a map ser-
vice in China similar to Google Street View.
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Figure 8: Visualization of five selected activity patterns with more taxi related activity events (indicated by red and orange event glyphs) to
faciitate marketing for a start-up company. The color opacity of the event glyph indicates the probability of an event’s occurrence in each pattern.

during morning and evening peak hours in Fig. 3(c1) indicate Dis-
trict b1 is likely to be an official block, while the peaks during 11
am-2 pm (Fig. 3(c2)) and 6 pm-10 pm (Fig. 3(c3)) indicate District
b2 and b3 are likely to be popular places for lunch break and enter-
tainment after work. By interacting with map, the experts further
verified that District b1 is Caohejin High-Tech Park, a well-known
official block in east Shanghai. Meanwhile, in District b2 and b3,
they found Kerry Parkside and IKEA, two shopping malls, which
may explain the activities in these two districts.

Finally, based on the knowledge obtained in MobiSeg, the ex-
perts made a road show plan for the company which smartly ad-
vertised their products at three places (District b1, b2 and b3) and
during three time periods (8am-10am, 12am-2pm, and 6pm-8pm)
to make sure their advertisement is always shown in a place with a
large number of potential customers and pursuit the best revenue.

6.2 Expert Feedback

Visual Design: The domain experts confirmed that our system
is well designed and user friendly, mentioning that the visualiza-
tions were aesthetically pleasing and interactions were smooth. In
particular, the experts were fond of the composite design of the
voronoi-based texture map in the Inspection View. Expert A was
interested in the voronoi layout and commented that “Presenting
[mobility] features as a glyph in a centroid voronoi grid while pre-
serving the spatial context is a smart idea as it facilitates a quick
comparison”. Expert B added “In the Inspection View, I can clearly
see the overall distribution of activity regions in an urban area and
easily interpret it with aggregated mobility features encoded in ac-
tivity glyphs”. He also appreciated the event glyph design in the
Activity Pattern View and thought it to be intuitive. Besides, the
experts also acknowledged the usefulness of the Global Map View
and Detail View. Expert D commented that the Global Map View
can provide a quick overview of data, and the Detail View enables
an in-depth investigation.

Comparison with Previous Work: We asked Expert B, C and D
to further compare our method with previous work [37]; they were
familiar with both of our method and Yuan’s. Expert C and D ap-
preciated MobiSeg as a pioneering study for exploring the potential
of using heterogeneous mobility data to monitor the dynamics of
a city and measure the structure of urban spaces. Expert C high-
lighted “By combining intuitive visualization with advanced ana-
Iytical methods, MobiSeg provides a powerful tool for exploring
data and supervising the analysis process. [...] We feel more com-
fortable and confident about the results obtained from MobiSeg”.
Moreover, Expert B believed that a major advantage of MobiSeg is
its capability of extracting interpretable activity patterns and show-
ing them side-by-side with the segmentation results as “it helps
to illustrate what are the underlying patterns behind the model”.
He also mentioned “By selecting patterns of interest, users can, to
some extent, filter out noises and improve the segmentation results
for certain applications”. Lastly, compared with previous work,
the experts particularly appreciated the interactive analysis method
supported by MobiSeg. Expert C said “Enabling iterative adjust-
ment of the initial segmentation result generated by automated al-
gorithms offers a flexible method to take full use of our domain
knowledge, which is always desired in our work”. He hoped this

method could be extended to other studies.

Improvements: Both Expert B and C mentioned that as the vi-
sualization incorporated a lot of information of people’s activities
through carefully designed glyphs, there would be a bit of learning
curve at the beginning to get familiar with all the views. However,
they both agreed that “Once you get used to it, the tool is very effi-
cient and provides a compact information representation for a com-
prehensive analysis”. Expert C added “In addition to peaks, valleys
of feature vector time-series may also be informative and could be
considered for characterizing regional activity patterns”. Expert D
said “In addtion to move-in/out and stay, MobiSeg could take the in-
formation of origin and destination of people’s movement into con-
sideration, which could help further improve the analysis”. He also
suggested “By analyzing a dataset covering a longer time span and
even integrating other information (e.g., social media data), Mo-
biSeg has a great potential to further explore the regional structure
of urban spaces for more advanced applications”.

7 CONCLUSION AND FUTURE WORK

This paper presents a visual analytics system, MobiSeg, to inves-
tigate people’s activity patterns for an interactive region segmenta-
tion based on heterogeneous mobility data. First, we derive a set
of features that characterizes people’s activities in each local dis-
trict. After that, an NMF-based method is introduced to capture
latent activity patterns, then we segment an urban area into activ-
ity regions and enable analysts to interactively adjust segmentation
results based on metric learning so as to make full use of their do-
main knowledge. Case studies and expert interviews demonstrate
the usefulness of our system.

Our work is still in progress. In the future, we intend to further
improve from the following aspects. First, for dealing with het-
erogeneous mobility data, there might be noises, mismatches and
conflicts between different datasets. We would like to extend our
method to investigate implicit relationships among multiple data
sources so as to capture activity patterns more precisely and im-
prove the robustness of our system. Second, our system will be
faced with scalability issues when the data grow. For example,
when dealing with many different types of data, it will be diffi-
cult to differentiate each layer of the activity glyph. Meanwhile, we
use color intensity in the activity glyph to encode the difference be-
tween “in” and “out” activities, but users can only distinguish a few
color intensities efficiently. In these cases, more levels of detail and
abstraction should be introduced to cope with this problem. Ad-
ditionally, in our current system, several parameters (e.g., bin size,
sliding-window size for activity event detection) are chosen based
on suggestions from domain experts. In the future, MobiSeg can be
extended to support an interactive configuration of parameters by
users, enabling more flexible explorations for various applications.
Besides, in this work, we focus on the design of visual analytics
framework and visualizations to support interactive region segmen-
tation based on heterogeneous mobility data. It is our plan to inves-
tigate more advanced algorithms (e.g., algorithms for peak detec-
tion, topic extractions and centroid Voronoi tessellation) to further
improve our system for a better region segmentation. Furthermore,
our method requires user’s adjustments based on initial results to
generate a satisfactory segmentation. Nonetheless, according to ex-
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perts’ feedbacks, the initial results could provide a good start point
for them to leverage their domain knowledge and reach a satisfac-
tory result within a few minutes. Finally, we also intend to make
an in-depth comparison with previous work and conduct controlled
experiments with quantitative measurements to collect more feed-
backs from end users for further improvement.
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