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Abstract Nowadays, massive graph streams are produced from various real-world
applications, such as financial fraud detection, sensor networks, wireless networks. In
contrast to the high volume of data, it is usually the case that only a small percentage
of nodes within the time-evolving graphs might be of interest to people. Rare category
detection (RCD) is an important topic in data mining, focusing on identifying the
initial examples from the rare classes in imbalanced data sets. However, most existing
techniques for RCDare designed for static data sets, thus not suitable for time-evolving
data. In this paper, we introduce a novel setting of RCD on time-evolving graphs. To
address this problem, we propose two incremental algorithms, SIRD and BIRD, which
are constructed upon existing density-based techniques for RCD. These algorithms
exploit the time-evolving nature of the data by dynamically updating the detection
models enabling a “time-flexible” RCD. Moreover, to deal with the cases where the
exact priors of the minority classes are not available, we further propose a modified
version named BIRD-LI based on BIRD. Besides, we also identify a critical task in
RCD named query distribution, which targets to allocate the limited budget among
multiple time steps, such that the initial examples from the rare classes are detected
as early as possible with the minimum labeling cost. The proposed incremental RCD
algorithms and various query distribution strategies are evaluated empirically on both
synthetic and real data sets.
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1 Introduction

Compared with the tremendous and rapidly changing data, the examples of interest to
us only hold a very small portion. For instance, in financial synthetic identity detec-
tion (Phua et al. 2010), only a tiny proportion of identities are fraudulent, generated by
mixing the identifying information from multiple sources. Such identities are created
with the sole purpose of committing financial fraud. Another example is insider threat
detection (Eberle et al. 2010), where only a small population amongst a big orga-
nization are malicious insiders involved in treacherous behaviors, such as sabotage,
espionage, etc. The small percentage of data of interest to us is called the minority
class or rare category, since such examples are often self-similar. Due to the rarity of
the minority classes and the limited budget on querying the labeling oracle who can
provide the true label of any example at a fixed cost, it is difficult to identify examples
from such classes via random sampling. To efficiently deal with this problem, rare
category detection (RCD) has been proposed to identify the very first example from
the minority class, by requesting only a small number of labels from the oracle (Pelleg
and Moore 2004).

Most, if not all, of existing RCD techniques are designed for static data. However,
in many real-world applications, the data is not static but evolves with time, and so
are the minority classes. Examples of such scenarios are listed as follows.

– In financial synthetic identity detection, within the transaction network, each iden-
tity could correspond to one specific node, and each transaction activity could
correspond to one edge. Since each identity may keep updating his or her infor-
mation, such as daily transactions and real-time online banking activities, the data
is evolving over time. Our goal is to identify the identities and transactions, which
have unusual characteristics and significantly differ from the majorities in the
networks.

– In insider threat detection, the insiders intentionally change their behavior patterns
over time to avoid being caught. In other words, the insiders may not be abnormal
all the time when compared with normal employees. Thus, how to distinguish
insiders and normal employees from evolving data is a challenge.

– In event detection in social networks, the snapshots of social networks are evolving
every single second with updated vertex sets and updated edge sets, which means
the event related vertex sets may shrink, expand or shift within the time-evolving
social networks. Hence, how tomodel, capture and track the changing target events
over evolving social networks would be the main task.

Straight-forward applications of existing RCD techniques in the preceding scenar-
ios would be very time-consuming by constructing the models from scratches at each
time step. Additionally, it is critical to allocate queries among different time steps from
labeling oracle, which may help detect the initial rare examples as early as possible to
avoid further damage.

Addressing this issue, in this paper, for the first time, we study the problem of incre-
mental RCD. Specifically, we first propose two incremental algorithms, i.e., SIRD and
BIRD, to detect the initial examples from the minority classes under different dynamic
settings. The key idea is to efficiently update our detection model by local changes
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instead of reconstructing it from scratches based on the updated data at a new time
step, so as to reduce the time cost of redundant and repeating computations. Further-
more, we relax the requirement of the exact priors with a soft upper bound for all the
minority classes to provide a modified version—BIRD-LI. Finally, we study a unique
problem of query distribution under the dynamic settings, which distributes allocated
labeling budget among different time steps, and propose five query distribution strate-
gies. This paper is extended from our previous work (Zhou et al. 2015b) in terms of
the detailed algorithm, theoretical justification and the comprehensive experiments on
real time-evolving graph data sets.

The rest of our paper is organized as follows. In Sect. 2, we briefly review the
related work on both RCD and time-evolving graph mining. In Sect. 3, we study
incremental RCD and propose three algorithms, i.e., SIRD, BIRD and BIRD-LI, to
address different dynamic settings.Then, inSect. 4,we introduce theuniqueproblemof
query distribution under the dynamic settings, and propose five strategies for allocating
the labeling budget among different time steps. In Sect. 5, we demonstrate our models
on both synthetic and real data sets. Finally, we conclude this paper in Sect. 6.

2 Related work

2.1 Rare category analysis

RCD refers to the problem of identifying the initial examples from under-represented
minority classes in an imbalanced data set. Lots of techniques have been developed for
solving the problem of RCD in the past decade. Pelleg and Moore (2004) proposed
a mixture model-based algorithm, which is the first attempt in this area. In He and
Carbonell (2007) and He et al. (2008), the authors developed an innovative method
to detect rare categories via unsupervised local-density-differential sampling strategy.
Dasgupta andHsu (2008) presented an active learning schemevia exploiting the cluster
structure in data sets. In He et al. (2010), the authors introduced a novel problem called
rare category characterization, which not only detects but also characterizes the rare
categories, and proposed an optimization framework to explore the compactness of rare
categories. More recently, in Liu et al. (2014), two prior-free methods were proposed
in order to address the RCD problem without any prior knowledge. In Zhou et al.
(2015a), the authors proposed a framework named MUVIR, which could leverage
existing RCD models on each single view and estimate the overall probability of each
example belonging to the minority classes. However, all of the preceding works focus
on the static data sets, and few works have been proposed to address the problem of
RCD under dynamic settings.

2.2 Outlier detection on streaming data

With the improvement of hardware technology on data collection, many applications
require efficient mechanisms to process the outlier detection on streaming data (Gupta
et al. 2014). Tons of algorithms have been proposed in the past decade. Yamanishi
and Takeuchi (2002) and Yamanishi et al. (2004) presented an online discounting
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learning algorithm to incrementally update a probabilistic mixture model and capture
outliers in data streams. In Aggarwal and Philip (2010), the authors proposed online
clustering methods, which maintained a dynamic clustering model to identify outliers
under dynamic settings. Instead of only updating parameters of the prediction model,
dynamic Bayesian network (Hill et al. 2007), a modifiable model, was proposed to
detect anomalies from environmental sensor data. Different from regular data streams,
distributed data streams are collected from distributed sensors over time. Bettencourt
et al. (2007) and Franke and Gertz (2008) studied the problem of outlier detection
on multiple types of distributed data streams, such as air temperature sensor network
data, water pollution sensor network data and wind sensor network data. Different
from outlier detection, rare category detection assumes that the anomalies belong
to multiple distinct classes, in the sense that the within-class similarities are much
larger than the between-class similarities. In this paper, we aim to discover these rare
categories over a series of time-evolving graphs.

2.3 Graph based anomaly detection

In the literature, there are abundant works focusing on anomaly detection in static
graphs. Basically, all of the existing works study two types of static graphs: plain
static graphs and attributed static graphs. Plain graph assumes the only information
we have is the structure of graph. This category of anomaly detection methods aims to
exploit the structure of graphs andmine the unrepresentative pattern of anomalies, e.g.,
global graph structure methods (Kang et al. 2010; Henderson et al. 2010); local graph
structure methods (Akoglu et al. 2010; Kang et al. 2011; Gupte and Eliassi-Rad 2012).
Attributed graph assumes both the structure and the coherence of attributes are given.
Müller et al. (2013) and Gao et al. (2010) proposed node outlier ranking methods
on static attributed graphs. Yagada Davis et al. (2011) characterized anomalies by
discrediting the numerical attributes into “outlier score”. In Sricharan and Das (2014),
the authors proposed a fast algorithm which could detect the node relationships for
localizing anomalous changes in time-evolving graphs.

More recently, an increasing number of research has been conducted under dynamic
graph settings. For examples, in Leskovec et al. (2005), the authors analyzed the prop-
erties of the time evolution of real graphs and proposed a “forest fire” graph-generative
model; Backstromet al. (2006) studied the problemof community evolution anddevel-
oped a novel method to measure the movement of individuals among communities;
in Kumar et al. (2010), the authors focused on the difficulties of conversation dynamics
and proposed a simple mathematical model in order to generate basic conversation
structures; in Berlingerio et al. (2012) and Koutra et al. (2011), the authors proposed
several graph similarity measurements to detect the discontinuity in dynamic social
networks. Besides, to reduce the time complexity, in Tong et al. (2008), the authors pro-
posed a fast proximity tracking method for dynamic graphs; in Koutra et al. (2012),
the authors used tensor decomposition techniques to efficiently obtain the “scores”
for anomalies on dynamic graphs; in Fan et al. (2013), the authors proposed a new
graph-pattern matching algorithm, which can avoid cubic-time computation; Akoglu
et al. (2014) raised a divide-and-conquer framework, which could find the k-nearest-
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Fig. 1 Incremental rare category detection

neighbors efficiently on high volume of time-evolving graphs. BIRD approach (Zhou
et al. 2015b) provided a fast updating method for the challenging problem of RCD on
time-evolving graphs. In this paper, we propose several fast-updating RCD methods
which could incrementally update themodels based on local changes on time-evolving
graphs. This paper extends our previous work (Zhou et al. 2015b) substantially by pro-
viding the detailed algorithm, theoretical justification and the comprehensive empirical
evaluations on real-world time-evolving graph data sets, which are not presented in
the previous version.

3 Incremental rare category detection

In this section, we introduce the proposed framework of incremental RCD. Our meth-
ods exploit the time-evolving nature of dynamic graphs and update the RCD model
incrementally based on the local updates from time to time. To the best of our knowl-
edge, existingRCDmethods are all designed for static data sets, while we target amore
challenging setting, in which the data is presented as time-evolving graphs. Notice that
we allow the support regions of the majority and minority classes to overlap with each
other in the feature space, which makes our algorithm widely applicable to a variety
of real-world problems.

3.1 Notation

Suppose we are given a series of time-evolving graphs {S(1), . . . , S(T )}, which are
shown in Fig. 1. For any time step t = 1, . . . , T , the vertices in S(t) are identical and
only edges change over time. We assume y(t)

i = 1 corresponds to the majority class

with prior p(t)
1 , and the remaining classes are the minority classes with priors p(t)

c at
time step t . We use �S(t) to denote the new edges and updated weights that appear at
time step t . Specifically, we have �S(t) = S(t) − S(t−1).

In the following part of this paper, we use the convention in Matlab to represent
matrix elements, e.g., S(t)(i, j) is the element at i th row and the j th column of matrix
S(t), and S(t)(:, j) is the j th column of matrix S(t), etc. The main symbols we used in
this paper are listed in Table 1.
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Table 1 Symbols
Symbol Description

n Number of nodes

m(t) Number of updated edges

xi i th nodes in data set

t Time step

C Number of classes

p(t)
c Proportion of classes c

α Constraint parameter

I Identity matrix

S(t) n × n original aggregated adjacency matrix at time t

�S(t) n × n updating matrix for S(t−1)

M(t) Normalized n × n aggregated adjacency matrix at time t

�M(t) n × n updating matrix for M(t−1)

NN (t) n × n neighbor information matrix at time step t

A(t) n × n global similarity matrix at time step t

3.2 Static rare category detection

In static RCD, we repeatedly select examples to be labeled by the oracle until all the
minority classes in a static data set are discovered. One approach for static RCD is to
make use of the manifold structure for identifying rare category examples. In He et al.
(2008), authors developed a graph-based RCD method named GRADE. In GRADE
algorithm, they first construct a pair-wise similarity matrix W ′ and its corresponding
diagonal matrix D, whose elements are the row sums of W ′. Then, they calculate the
normalized matrix W as follows.

W = D−1/2W ′D−1/2

Based on the normalized pair-wise similarity matrix W , they construct a global simi-
larity matrix A as follows.

A = (In×n − αW )−1 (1)

where α is a small enough positive discounting constant in the range of (0, 1). By
constructing the global similarity matrix, the changes of local density would become
sharper near the boundary of the minority classes. Based on this intuition, GRADE
could identify minority classes with much fewer queries than random sampling. How-
ever, the time complexity of calculating the global similarity matrix and finding each
example’s (K )th nearest neighbor is O(n3 + K · n2), which is not efficient enough
for time-evolving RCD applications.
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3.3 Dynamic rare category detection

In this subsection, we introduce two fast-updating incremental RCD algorithms (SIRD
and BIRD) to deal with the RCD problem on time-evolving graphs. Both methods
greatly reduce the computation cost for updating the global similarity matrix and
finding each node’s K th nearest neighbor. Similar to static rare category detection,
we target the challenging case where the minority classes are not separable from the
majority classes.

3.3.1 Single update

We first consider the simplest case: only one self-loop edge (a, a) changes at time step
t . In other words, there is only one non-zero element (a, a) in�S(t). Similar toHe et al.
(2008), we use M (t) to denote the normalized aggregated adjacency matrix, which is
defined as follows.

M (t) = (D(t))−1/2S(t)(D(t))−1/2 (2)

Besides, let �M (t) denote the updating matrix for M (t), such as �M (t) = M (t) −
M (t−1). Clearly, there is also only one non-zero element existing in �M (t). Hence,
�M (t) could be easily decomposed into the product of two column vectors uvT ,
where u and v are two column vectors with only one non-zero element. To address
this problem, we first introduce Theorem 1 to update the global similarity matrix A(t)

more efficiently.

Theorem 1 The global similarity matrix A(t) at time step t can be exactly updated
from global similarity matrix A(t−1) at the previous time step t − 1 by the following
equation:

A(t) = A(t−1) + α
A(t−1)uvT A(t−1)

I + vT A(t−1)u

where u and vT are the two vectors decomposed from updating matrix �M (t)

Proof Suppose there is only one edge updated at time step t , and we have �M (t) =
uvT . Thus, Eq. (1) could be rewritten as follows.

A(t) =
(
I − αM (t)

)−1

=
(
I − αM (t−1) − α�M (t)

)−1

=
(
I − αM (t−1) − αuvT

)−1
(3)

By applying the Sherman–Morrison Lemma (Sherman and Morrison 1950), we have

A(t) = A(t−1) + α
A(t−1)uvT A(t−1)

I + vT A(t−1)u
(4)
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Hence, the global similarity matrix A(t) in our Algorithm 1 could be exactly updated
at each time step. ��

In Theorem 1, we can see column vectors u and v are essential for updating the
global similarity matrix A(t). To reduce the computational complexity, in Algorithm
1, we use an approximate method to calculate the two column vectors u and v. The
details are described as follows. We first assume that the updated edges at time step t
have little impact on the row sum of adjacencymatrix S(t) when the number of updated
edges is extremely smaller than the total number of edges. Thus, we have

D(t) ∼= D(t−1)

To normalize aggregated adjacency matrix of S(t) and S(t−1), we have

M (t) =
(
D(t)

)−1/2
S(t)

(
D(t)

)−1/2
(5)

M (t−1) =
(
D(t)

)−1/2
S(t−1)

(
D(t−1)

)−1/2
(6)

By Eqs. (5, 6), we have

�M (t) =
(
D(t−1)

)−1/2
�S(t)

(
D(t−1)

)−1/2
(7)

As �M (t) = uvT , we could easily assign
u = D(:, a)−1/2 and v = �S(t)(a, b)D(:, b)−1/2.

Besides, as the time complexity of constructing a new neighbor information matrix
NN (t) is O(K (t) · n2), we introduce Theorem 2 to efficiently update NN (t).

Theorem 2 Suppose there is only one self loop edge (a, a) being updated at time step

t. If it satisfies the condition that α

I+vT A(t−1)u
≤ δ

(t−1)
i

A(t−1)
i,a φa

, the first K (t) elements in

N N (t)(i, :) are the same as N N (t−1)(i, :).
Proof Based on Theorem 1, we have

A(t) = A(t−1) + α
A(t−1)uvT A(t−1)

I + vT A(t−1)u

= A(t−1) + α
A(t−1)�M (t)A(t−1)

I + vT A(t−1)u
(8)

Since u and v are column vectors that contain only one non-zero element, then I +
vT A(t−1)u is a constant value, which means it is just a scalar and will not change the
order of elements in NN (t).

From Eq. (8) we also have the updating rule for each element (i, j) in A(t)

A(t)
i, j = A(t−1)

i, j + βA(t−1)
i,a A(t−1)

a, j (9)
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where β = α

I+vT A(t−1)u
is also a constant.

Let δ
(t−1)
i = minK

(t)

j=1

{
NN (t−1)(i, j) − NN (t−1)(i, j + 1)

}
denote the smallest

adjacent difference among the first K (t) elements in the i th row of NN (t−1), and
φa = NNt−1(a, 1) denote the largest element in row a. Intuitively, as long as the
largest value of βA(t−1)

i,a A(t−1)
a, j is smaller than the smallest adjacent gap between any

of the first K (t) nodes in the i th row of NN (t), we can claim that the order of these
sorted K (t) nodeswill not change. Therefore, based on Eq. (9), if the condition satisfies

α

I + vT A(t−1)u
≤ δ

(t−1)
i

A(t−1)
i,a φa

(10)

we can claim that the first K (t) elements in NN (t)(i, :) will not change. ��
Based on Theorem 2, we can identify the rows of NN (t), in which the order of the

K (t) largest elements will not change. Thus, we only need to update the disordered
rows in NN (t).

The single-updated incremental RCD algorithm (SIRD) is shown in Algorithm 1.
In Step 1 to Step 2, we first initialize the diagonal matrix D and neighbor information
matrix NN (1) at time step 1. In Step 4, let K (t) represent the number of nodes in the
largest minority class at time step t . Then, from Step 5 to Step 6, we update the global
similarity matrix at each time step. Step 7 to Step 9 updates the rows in NN (t), of
which the K (t) largest elements are changed. Step 11–20 is the query process. First of
all, we calculate the class specific ac at Step 13, which is the largest global similarity
to the k(th)

c nearest neighbor. Then, in Step 14, we count the number of its neighbors
whose global similarity is larger than or equal to ac, and let nci denote the counts for
each node xi . In Step 16, we calculate the score of each node xi , which represents the
change of local density. At last, we select the nodes with the largest score and let them
be labeled by oracle. The query process only terminates as long as all the minority
classes are discovered.

The efficiency of the updating process for Algorithm 1 is given by the following
lemma.

Lemma 1 The computational cost of the updating process at each time step in Algo-
rithm 1 is O(n2 + l · K (t) · n).

Proof As described before, the computational cost for normalization and decompo-
sition process is O(n). Then, in Step 6, compared to the straightforward computation,
i.e., A(t−1) = (I − αM (t))−1, we reduce the time complexity from O(n3) to O(n2)
by avoiding the matrix inverse computation. Furthermore, from Step 7 to Step 9, we
simplify the resorting process by only updating the rows, in which the top K (t) ele-
ments are disordered. Suppose l is the total number of rows in NN (t), which does
not satisfy Eq. (10), then the computational cost is reduced from O

(
K (t) · n2) to

O
(
l · K (t) · n)

. By leveraging eachpart, the computational cost of the updating process
is O

(
n2 + l · K (t) · n)

. ��
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ALGORITHM 1: SIRD Algorithm

Input: M(1), A(1), �S(2), . . . , �S(T ), p(t)
c , α.

Output: The set I of labeled nodes
1: Construct the n × n diagonal matrix D, where Dii = ∑n

( j=1) S
(1), i = 1, . . . , n.

2: Sort row i of A(1) decreasingly and save into NN (1)(i, :), where i = 1, . . . , n.
3: for t=2:T do
4: Let K (t) = maxCc=2 n × p(t)

c .

5: Let column vector u = D(:, a)−1/2, and column vector v = �S(t)(a, a)D(:, a)−1/2, where
�S(t)(a, a) is the non-zero element in �S(t).

6: Update the global similarity matrix as follows.

A(t) = A(t−1) + α
A(t−1)uvT A(t−1)

I + vT A(t−1)u

7: for i=1:n do
8: Based on Theorem 2, identify whether the first K (t) elements of NN (t) (i,:) are changed. If

true, update the first K (t) elements in NN (t)(i, :); otherwise, let NN (t)(i, :) = NN (t−1)(i, :).
9: end for
10: end for
11: for c = 2:C do
12: Let kc = n × p(T )

c
13: Find the first kc elements in each row of NN (T ). Set ac to be the largest value of them.
14: Let K NNc(xi , a

c) = {x |NN (T )(i, j) > ac}, and nci = |K NNc|, where i = 1, . . . , n and
j = 1, . . . , n.

15: for index = 1: n do
16: For each node xi has been labeled yi , if A(T ) > ayi , score j = −∞; else, let scorei =

max
A(T )(i, j)> ac

index
(nci − ncj )

17: Select the nodes x with the largest score to labeling oracle.
18: If the label of x is exact class c, break; else, mark the class that x belongs to as discovered.
19: end for
20: end for

3.3.2 Batch update

In most real world applications, we always observe that a batch of edges change at
the same period. Specifically, the updated aggregated adjacency matrix �M (t) may
have more than one non-zero element. Hence, �M (t) cannot be decomposed into two
column vectors, and Theorem 2 could not be applied in this condition. In this part, we
introduce Theorem 3 to help us update the neighbor information matrix NN (t) when
a batch of edges are changed.

Theorem 3 Suppose there are m edges {(a1, b1), . . . , (am, bm)} being updated at
time step t. The first K (t) elements in N N (t)(i, :) are the same as N N (t−1)(i, :), if it
satisfies the condition that

α

I + V T A(t−1)U
≤ min

i=1,...,m
{Ti }

where Ti = min

{
δ
(t−1)
i

A(t−1)
i,ai

φbi
,

δ
(t−1)
i

A(t−1)
i,bi

φai

}
.
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Proof Since the aggregated adjacency matrix M (t) is a symmetric matrix, then, each
element (a, b), where a 	= b, has a symmetrical element (b, a) in M (t).

When the two edges (a, b) and (b, a) are updated at time step t , we have �M (t) =
�M (t)

1 + �M (t)
2 , where �M (t)

1 has only one non-zero element (a, b), and �M (t)
2 has

only one non-zero element (b, a). Similar to Eq. (8), we have an approximate updating
rule as follows.

A(t) ∼= A(t−1) + α
A(t−1)�M (t)

1 A(t−1)

I + (v(1))T A(t−1)u(1)

+ α
A(t−1)�M (t)

2 A(t−1)

I + (u(1))T A(t−1)v(1)
(11)

where �M (t)
1 = u(1)(v(1))T , �M (t)

2 = v(1)(u(1))T and u(1), v(1) are two column
vectors.

Besides, we also have

A(t) = A(t−1) + β
(
A(t−1)�M (t)

1 A(t−1) + A(t−1)�M (t)
2 A(t−1)

)

where β = α

I+(v(1))T A(t−1)u(1) , and β is a constant.

Therefore, A(t)
i, j = A(t−1)

i, j + βA(t−1)
i,a A(t−1)

b, j + βA(t−1)
i,b A(t−1)

a, j .

Based on Theorem 2, we can claim that the largest K (t) elements in NN (t)(i, :)
will not change, if it satisfies

α

I + V T A(t−1)U
≤ T1 (12)

where T1 = min

{
δ
(t−1)
i

A(t−1)
i,a1

φb1
,

δ
(t−1)
i

A(t−1)
i,b1

φa1

}
.

Similarly, when there are m(t) pairs of edges being updated at time step t, we can
claim that if it satisfies

α

I + V T A(t−1)U
≤ m(t)

min
m=1

{Tm} (13)

where Tm = min

{
δ
(t−1)
i

A(t−1)
i,ac φbc

,
δ
(t−1)
i

A(t−1)
i,bc φac

}
, then the first K (t) elements in NN (t)(i, :)will

not change. ��
The Batch-update Incremental RCD (BIRD) algorithm is shown in Algorithm 2.

Step 1 and Step 2 are the initialization step. Step 3 to Step 12 updates the global
similarity matrix A(t) and the neighbor information matrix NN (t). Different from
Algorithm 1, Step 5 to Step 8 iteratively updates the global similarity matrix A(t)

based onm(t) changed edges. Another difference is that, in Step 10, T is the minimum
value of the thresholds calculated fromm(t) updated edges. At last, Step 13 to Step 20
is the query process, which is the same as what we have described in Algorithm 1.

The efficiency of batch-edges updating in Algorithm 2 is proved by the following
lemma.
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Lemma 2 In Algorithm 2, the computational cost of the updating process at each
time step is O(m(t)n2 + l · K (t) · n).

Proof Different from Algorithm 1, in Algorithm 2, we have m(t) updated edges at
time step t . We need to update the global similarity matrix A(t) for m(t) times. Thus,
the computation cost of updating the global similarity matrix is O(m(t)n2). Let l be
the number of rows in NN (t), which do not satisfy Eq. (13). For updating these rows in
NN (t), the computational complexity is O(l ·K (t) ·n). Thus, in total, the computation
cost of updating process at each time step is O(m(t)n2 + l · K (t) · n). ��

ALGORITHM 2: BIRD algorithm

Input: M(1), A(1), �S(2), . . . , �S(T ), p(t)
c , α.

Output: The set I of labeled nodes
1: Construct the n × n diagonal matrix D, where Dii = ∑n

( j=1) S
(1), i = 1, . . . , n.

2: Sort row i of A(1) decreasingly and save into NN (1)(i, :), where i = 1, . . . , n.
3: for t=2:T do
4: Let K (t) = maxCl=c n × p(t)

c .

5: for m = 1: m(t) do
6: Let column vector u = D(:, am )−1/2, and column vector v = �S(t)(am , bm )D(:, bm )−1/2,

where �S(t)(am , bm) is the non-zero element in �S(t).
7: Update the global similarity matrix as follows.

A(t) = A(t−1) + α
A(t−1)uvT A(t−1)

I + vT A(t−1)u

8: end for
9: for i=1:n do
10: Based on Theorem 3, identify whether the first K (t) elements of NN (t) (i,:) are changed. If

true, update the first K (t) elements in NN (t)(i, :); otherwise, let NN (t)(i, :) = NN (t−1)(i, :).
11: end for
12: end for
13: while not all the classes have been discovered do
14: Calculate ni for each node, where i = 1, . . . , n.

15: for index = 1: n do
16: For each node xi has been labeled yi , if A(T ) > a, score j = −∞; else, let scorei =

maxA(T )(i, j)> a
index

(ni − n j )

17: Select the nodes x with the largest score to labeling oracle.
18: Mark the class that x belongs to as discovered.
19: end for
20: end while

3.4 BIRD with less information

In many applications, it may be difficult to obtain the exact priors of all the minority
classes. In this subsection, we introduce BIRD-LI, a modified version of BIRD, which
requires only an upper bound prior p(t) for all the minority classes existing at time
step t . To be specific, BIRD-LI calculates NN (1) and diagonal matrix D at the first
time step, which is the same as BIRD. Then, the global similarity matrix A(t) and the
neighbor information matrix NN (t) could be updated from the first time step to the
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time step T . The only difference between BIRD and BIRD-LI is that the size of the
minority class K (t) is calculated based on an estimated upper bound prior instead of the
exact ones for all the minority classes. After the updating process, BIRD-LI calculates
an overall score for the minority classes and selects the nodes with the largest overall
score to be labeled by the oracle.

BIRD-LI is described in Algorithm 3. It works as follows: Step 1 to Step 2 is the ini-
tial process for calculating NN (1) and the diagonal matrix D at the first time step. Step
3 to Step 12 aims to update the global similarity matrix A(T ) and the neighbor infor-
mation matrix NN (T ) from time step 1 to time step T , which is the same as BIRD. The
while loop from Step 13 to Step 20 is the query process. We calculate an overall score
for the minority classes and select the nodes with the largest overall score to be labeled
by the oracle. BIRD-LI only terminates the loop until all the classes are discovered.

ALGORITHM 3: BIRD-LI algorithm

Input: M(1), A(1), �S(2), . . . , �S(T ), p(t), α.
Output: The set I of labeled nodes and the L of their labels
1: Construct the n × n diagonal matrix D, where Dii = ∑n

( j=1) S
(1), i = 1, . . . , n.

2: Sort row i of A(1) decreasingly and save into NN (t)(i, :), where i = 1, . . . , n.
3: for t =2:T do
4: Let K (t) = n × p(t).
5: for m = 1: m(t) do
6: Let column vector u = D(:, am )−1/2, and column vector v = �S(t)(am , bm )D(:, bm )−1/2,

where �S(t)(am , bm) is a non-zero element in �S(t).
7: Update the global similarity matrix as follows.

A(t) = A(t−1) + α
A(t−1)uvT A(t−1)

I + vT A(t−1)u

where u and vT are the two vectors decomposed from normalized updating matrix �M(t).
8: end for
9: for i=1:n do
10: Based on Equation 13, identify whether the first K (t) elements of NN (t) (i,:) are changed. If

true, update the first K (t) elements in NN (t)(i, :); otherwise, let NN (t)(i, :) = NN (t−1)(i, :).
11: end for
12: end for
13: while not all the classes have been discovered do
14: Calculate ni for each node, where i = 1, . . . , n
15: for index = 1: n do
16: For each node xi has been labeled yi , if A(T ) > a, score j = −∞; else, let scorei =

maxA(T )(i, j)> a
index

(ni − n j )

17: Select the nodes x with the largest score to labeling oracle.
18: Mark the class that x belongs to as discovered.
19: end for
20: end while

4 Query dynamics

In the previous section, we introduce two incremental RCD methods, i.e., BIRD and
SIRD, which are used for identifying rare categories on time-evolving graphs. Taking
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the advantage of BIRD and SIRD, we can efficiently update the initial RCD model at
time step 0 to any future time step T . However, inmany real word applications, wemay
not want to make queries to oracle at each time step or we may only be allowed with
a limited number of queries. In these two cases, we introduce the following two open
problems: (1) query locating (QL): how to find the optimal time step T to discover
rare categories; (2) query distribution (QD): how to allocate limited number of queries
into different time steps.

4.1 Query locating

First of all, we introduce the query locating problem. In real world applications,
it could be the case that we are given a series of unlabeled time-evolving graphs
S(1), S(2), . . . , S(T ), and we need to select an optimal time step Topt , so that we can
identify the minority classes with as less queries as possible (ALAP) and as early as
possible (AEAP).

Before presenting our methods, let us introduce the two main factors that may
affect the required number of queries in rare category detection. The first factor is
P(y = 2|xi ), which is the probability that example xi belongs to the minority class
given the features of xi . A considerable number of works have already studied it
before, such asMUVIR (Zhou et al. 2015a), GRADE (He et al. 2008) and NNDM (He
and Carbonell 2007). Another factor is the density Di at xi , the definition of which
is introduced in Theorem 4. When the density Di at example xi is high, it means
there are many other examples close or similar to example xi . Suppose there are two
nodes xi and x j in graph G, where P(y = 2|xi ) = P(y = 2|x j ) and Di > Dj .
Since the density at node xi is larger than the density at node x j , there is a higher
probability that multiple classes are overlapped in the neighborhood of xi . To some
extent, higher density Di implies higher probability of mis-classifying xi . Thus, the
value of P(y = 2|xi ) is negatively correlated with the number of required queries,
and the value of density Di is positively correlated with the number of required labels.
For the second factor, we introduce the following theorem to estimate local density
based on the global similarity matrix constructed before.

Theorem 4 For each example xi , the density of xi is positively correlated with D(t)
i

at time step t, where D(t)
i = Σn

j=1A
(t)
i, j , i = 1, . . . , n.

Proof Notice that A(t)(i, j) represents the global similarity between xi and x j . Thus,

D(t)
i = Σn

j=1A
(t)
i, j is the aggregated global similarity between example xi and all the

existing examples on graph. If the density of example xi is high, then it is always true
that there are lots of examples which are similar or close to xi . In other words, the
density D(t)

i should be large. Similarly, when the density of xi is low, the value of D
(t)
i

should be small. In conclusion, for any existing example xi in the graph, its density is
positively correlated with D(t)

i . ��

We let score(t) = P(y = 2|x (t)
i ), which could be obtained using existing tech-

niques such as MUVIR Zhou et al. (2015a) or GRADE He et al. (2008). Under this
circumstance, we propose to assign the hardness of identifying the minority classes at
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Fig. 2 Correlation

time step t as follows.

I (t) =
{
kc max

i=1,...,kc

score(t)
i

D(t)
i

}−1

(14)

where kc is the number of examples in the minority class c. In Fig. 2, the left figure
shows the exact number of queries needed to identify rare categories from a series of
time-evolving graphs. The right figure shows the value of I (t) calculated by Eq. (14).
We can see these two curves are highly correlated.

Let RS(t) denote the number of required queries by random sampling at time step

t . Simultaneously, let C = RS(1)−RS(T )

T . Intuitively, we could achieve optimal solu-
tion Topt , when the difference between the “exact” saved number of queries and the
estimated saved number of queries, i.e., C ∗ Topt , is maximized. The formulation is
shown as follows.

max
t=1,...,T

I (1) − I (t)

I (1) − I (T )
·
(
RS(1) − RS(T )

)
− C · t (15)

4.2 Query distribution

In this subsection, we discuss a more general problem: query distribution. In real-
world applications, it could be the case that the updated graphs come as streams, and
we need to allocate our query budget among multiple time steps. Hence, we need a
method to allocate the queries properly among different time steps and enable us to
find the minority class examples with the minimum query budget and time.

To further explore this problem, we generate a synthetic data set containing two
classes, in which the initial proportion of the minority class equals to 0.1%. We
increase the proportion of the minority class by 1% in each time step. In Fig. 3, each
point (Q; T ) represents the minimum required budget Q for identifying the minority
class by time step T , and the budget is evenly allocated from time step 1 to time step
T . From this figure, we have 3 observations: (i) if we need to finish the task by time
step 1, then the largest number of queries is required; (ii) if we only need to finish the
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Fig. 3 Query allocation

u

task by the last time step, the smallest number of queries is required. (iii) the point
at time step 3 is likely to hold a good trade-off, which has a relatively low querying
number and early detection time.

To further study the query dynamics problem, we propose 5 potential strategies for
the query distribution problem:

– S1 Allocate all the budget at the first time step.
– S2 Allocate all the budget at the last time step.
– S3 Allocate all the budget into time step Topt .
– S4 Allocate the query budget evenly among different time steps.
– S5 Allocate the query budget into different time steps following exponential dis-
tribution, such as e−αt , where α > 0.

For query distribution problem, we propose Algorithm 4. Different from the query
process of Algorithm 2, in Step 3, we need to apply a strategy to calculate the certain
budget B(t) for time step t . If we have not found the minority class within B(t) at time
step t , then we go to the next time step. The overall algorithm stops either when the
minority class is discovered or when there is no budget to use.

We compare the performance of these five strategies with both synthetic data sets
and real data sets in Sect. 5.

5 Experiments

The analysis in Sects. 3 and 4 shows the advantage of our model in RCD on time-
evolving graphs. In this section, we aim to empirically verify the effectiveness and the
efficiency of the proposed algorithms on both synthetic data sets and real data sets.

5.1 Data sets and setup

Six time-evolving graph data sets are used for testing our proposed algorithms. Among
these 6 data sets, there is 1 synthetic data set, 3 semi-real data sets and 2 real data sets.
In Table 2, we list several statistics of each data set.
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ALGORITHM 4: Query distribution algorithm

Input: Strategy S,M(1),A(1),NN (1),�S(2), . . . , �S(T ),p(t),α.
Output: The set I of labeled nodes and the L of their labels
1: for t = 1:T do
2: Let K (t) = maxCl=c n × p(t)

l .

3: Calculate B(t) as given Strategy S.
4: Calculate NN (t) as described in Algorithm 2.
5: while not all the classes have been discovered do
6: Find the (K (t))th element in each row of NN (t). Set ac to be the largest value of them.
7: Let K NNc(xi , a

c) = {x |NN (T )(i, j) > ac}, and nci = |K NNc|, where i = 1, . . . , n and
j = 1, . . . , n.

8: for index = 1: B(t) do
9: For each node xi has been labeled yi , if A

(T ) > ayi , score j = −∞; else, let

scorei = max
A(T )(i, j)> ac

index

(
nci − ncj

)

10: Select the nodes x with the largest score to labeling oracle.
11: If the label of x is exact class c, break; else, mark the class that x belongs to as discovered.
12: end for
13: end while
14: If all the minority classes are discovered, break.
15: end for

Table 2 Statistics of different data sets

Name Instance Time steps Number of classes

Synthetic data 5000 6 2

Abalone 4177 6 20

Adult 48,842 6 2

Statlog 58,000 6 6

Epinion 5665 16 24

Twitter 16,149 5 6

The synthetic data set contains 5000 instances, and we assume the proportion of
the minority class is increasing over time. Hence, to generate the time-evolving graphs
in later time steps, we let the proportion of a certain minority class increase by 1%
and simultaneously let the proportion of the majority class decrease by 1% at each
time step. Meanwhile, we generate additional 6 time-evolving graphs for 6 more time
steps.

The Abalone data set comes from a biology study. In this data set, we need to
predict the age of abalone based on multiple features. The age varies from 1 to 29,
which roughly forms a normal distribution. Specifically, there are very few examples
lying in the two extreme sides of the distribution. We separate the Abalone data set
into 5 classes, i.e., one majority class and 4 minority classes. The proportion of the
majority class is 56.93%, and the proportion of the smallest class is 0.4%. Besides,
we choose the minority class with the smallest prior to evolve over time.

TheAdult data set comes fromademographic census,which aims to predictwhether
the income of people exceeds $50K per year or not. In Adult data set, there are 48,842
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examples containing one majority class and one minority class. The majority class
is the population of income below $50K, and the minority class is the population of
income above $50K. In this data set, around 24% of examples belong to the minority
class. Since we stand on the problem of the RCD, we keep the majority class the same
and only take 500 examples from the minority class. In this way, we can generate 24
data sets with the minority priors of 1.3%. Notice that all the experimental results for
the Adult data set are calculated from the average values of the 24 sub-data sets.

The Statlog data set comes from a shuttle schedule database, which consists of
58,000 examples and 7 classes. However, we only include the 6 largest classes in our
evaluation, because the smallest class only contains 13 examples. After this modifica-
tion, the priors of the 5 minority classes vary from 0.04 to 15%. Same as before, we
incrementally increase the proportion of the smallest minority class by 1% in each
time step.

The Epinion data set is a collection of about 5665 instances and 10,382 features over
16 time steps crawled fromEpinion.com. Epinions is a product review site, where users
can share their reviews about products. Users themselves can also build trust networks
to seek advice from others. In this data set, each product is an instance, and the features
for each product are formed by the bag-of-words model upon its reviews. In addition,
the smallest class in Epinion only consists 0.03% vertices while the proportion of the
largest class is 17.56%.

The Twitter data set is crawled from Twitter streaming API based on a set of ter-
rorism related keywords, such as shoot, kidnap, blast and etc.. We include 16,149
English-speaking twitter users from 6 countries and around 10 millions tweets from
4/25/2015 to 5/5/2015. Then, we extract 209 features based on users’ profiles, senti-
ments analysis, topic model analysis and users’ ego-network analysis. In this data set,
there are 56% of users from Turkey, 0.09% from Syria, 0.3% from Iraq, 1.3% from
Iran, 36% from Saudi Arabia and 5.8% from Yemen. We separate the users into 6
classes based on their nationalities and generate a time-evolving graph in each 2-day
interval.

5.2 Performance evaluation

First of all, we demonstrate the effectiveness upon 1000 synthetic data sets and 3
semi-synthetic data sets. We generate 1000 synthetic data sets, and each of them
contains 5,000 examples belonging to two classes. Besides, we initialize the priors
of the minority classes as 1% and increase these priors by 1% at each time step. We
also make use of 3 real data sets which meet the scenario of RCD. The details of
these 3 real data sets are summarized in Table 2. Then, we synthesize additional 6
time-evolving graphs from time step 2 to time step 7. For these time-evolving graphs,
we let the proportion of a certain minority class increase by 1% and simultaneously let
the proportion of the majority class decrease by 1% at each time step. Fig. 4a shows
the comparison results of 4 different methods: random sampling (RS), BIRD, BIRD-
LI and GRADE. Notice that BIRD and BIRD-LI perform the query process upon the
approximate aggregated adjacency matrix, while GRADE is performed on the exact
adjacency matrix at each time step. Besides, we provide BIRD-LI with a much looser
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(a) (b)

(c) (d)

Fig. 4 Performance on synthetic and semi-synthetic data sets. a Synthetic data. b Abalone. c Adult. d
Statlog

prior upper bound, e.g., we input 5% as the upper bound instead of using the exact
prior of 1%. Then, we perform the same comparison experiments on 3 semi-synthetic
data sets, which are shown in Fig. 4b–d. At last, we evaluate our algorithms on two
real data sets in Figs. 5 and 6. Different from the previous cases, the proportions of the
minority classes vary randomly instead of increasing over time. In general, we have
the following observations: (i) both BIRD and BIRD-Li outperform random sampling
in any conditions; (ii) all of these 4 methods perform better when the prior of minority
class is getting larger; (iii) BIRD gives a comparable performance as GRADE does;
(iv) BIRD-LI is quite robust and requires only a few more queries than BIRD does in
most cases.

5.3 Efficiency of batch update

We run the experiments with Matlab 2014a on a workstation with CPU 3.5 GHz 4
processors, 256 GB memory and 2 T disk space. For both BIRD and GRADE, the
most time-consuming step is updating the global similarity matrix A(t) and neighbor
information matrix NN (t) at each time step. In this subsection, we report the running
time of updating A(t) and NN (t) from an initial time step to the second time step.
To better visualize the performance, we run the experiment on an increasing size of
graph, i.e., from 500 examples in graph to 1000 examples in graph. For each certain

123



Discovering rare categories from graph streams 419

Fig. 5 Performance on epinion data set

Fig. 6 Performance on twitter data set

size, we have 100 identical-setting data sets. Each point in Fig. 7 is computed based
on the average value of the 100 data sets under identical settings. As we mentioned
before, the computation cost of GRADE is O(n3), and our method only costs O(n2).
From Fig. 7, we can see the difference of running time is gradually increasing over
time. The difference is limited when the number of examples is 500. However, when
the size of graph goes to 10,000, the running time of BIRD is 6.227 seconds, while
the running time of GRADE is 41.41 seconds, which is 7 times of BIRD. Moreover,
the difference would be even more significant when we run algorithms on a series of
time steps.
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Fig. 7 Efficiency

(a) (b)

(c)

Fig. 8 Query locating. a Abalone. b Adult. c Statlog

5.4 Query dynamics

In this subsection, we show the performance of query locating and query distribution.
In Fig. 8, we apply the query locating methods on 3 real data sets. As the proportion
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(a) (b)

Fig. 9 Query distribution. a Synthetic data set. b Real data set (adult)

is increasing over time, the labeling request is decreasing in general. Besides, we also
observe that Topt is always located at the left bottom of each graph, which meets our
ALAP and AEAP intuitions.

Furthermore, by applying Algorithm 4, we perform the results of 5 different strate-
gies on one binary-class synthetic data set and one binary-class real data set, i.e.,
Adult. In both Fig. 9a, b, we observe that Strategy S1 is always located at the left top
of the figure, which holds the time optimal; Strategy S2 is always located at the right
bottom of the figure, which holds the budget optimal; Strategy S3 is always located
at the left bottom of the figure, which considers both the time and the budget factors.
All of these 3 observations are consistent with our intuitions.

Besides, we also find two interesting observations. The first one is that, in Fig. 9a,
Strategy S4 performs slightly better than Strategy S5, while Strategy S5 outperforms
Strategy S4 in Fig. 9b. The reason is as follows. Strategy S5 always allocates most
of the budget at the earliest few time steps, which is why Strategy S5 could identify
minority class examples at time step 1 in Fig. 9b. But, if Strategy S5 cannot discover
the minority class at the beginning, it will finish the task later than Strategy S4, which
is why S5 performs worse than S4 in Fig. 9a. Strategy S4 allocates its budget evenly
among each time steps. However, when the task is relatively tough at the beginning
few time steps and relatively easy at the end, Strategy S4 may fail. This is what is
happening in Fig. 9b. Another interesting observation is that, in Fig. 9b, Strategy
S3 only queries 27 examples at time step 3 for discovering the minority class, while
Strategy S4 needs 39 labeling requests. Since the graph is evolving over time, Strategy
S4 may automatically skip some minority-class examples when these examples are
pretty similar to the previous labeled examples, which is the reason why Strategy S4
requires more queries.

6 Conclusion

In this paper, wemainly focus on the problem of efficiently and incrementally identify-
ing under-represented rare category examples from time-evolving graphs. We propose
two fast incremental updating algorithms, i.e., BIRD and SIRD, as well as a general-
ized version of BIRD named BIRD-LI to handle the problems where the exact priors
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of the minority classes are unknown. Furthermore, based on our algorithms, we intro-
duce five strategies to deal with the novel problem—query distribution. To the best
of our knowledge, this is the first attempt in RCD under these dynamic settings. The
comparison experiments with state-of-the-art methods demonstrate the effectiveness
and the efficiency of the proposed algorithms.
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