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Abstract. Mining trajectory datasets has many important applications. Real tra-
jectory data often involve uncertainty due to inadequate sampling rates and mea-
surement errors. For some trajectories, their precise positions cannot be recovered
and the exact routes that vehicles traveled cannot be accurately reconstructed. In
this paper, we investigate the uncertainty problem in trajectory data and present
a visual analytics system to reveal, analyze, and solve the uncertainties associ-
ated with trajectory samples. We first propose two novel visual encoding schemes
called the road map analyzer and the uncertainty lens for discovering road map
errors and visually analyzing the uncertainty in trajectory data respectively. Then,
we conduct three case studies to discover the map errors, to address the ambiguity
problem in map-matching, and to reconstruct the trajectories with historical data.
These case studies demonstrate the capability and effectiveness of our system.
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1 Introduction

In recent years, there has been a dramatic increase in GPS-embedded devices used for
navigation and tracking, which enables the collection of large volumes of GPS trajecto-
ries [8]. Trajectory data play important roles in urban planning, route recommendation,
traffic analysis, and transportation management. Usually, trajectories are presented in
two styles: curves (parameterized by time) in a 2D plane or trajectory samples that are
discrete spatial-temporal points. The latter style is widely adopted in trajectory datasets
since the cost of capturing and maintaining data is relatively low. However, the tra-
jectories represented by samples often involve uncertainty which might appear as data
imprecision due to sampling/measurement errors or fuzziness caused by pre-processing
for preserving anonymity. Uncertainty in trajectories poses challenges for enhancing,
reconstructing, and mining trajectories.

Uncertainty that appears as measurement errors has been studied for enhancing his-
torical trajectories [9]. Limited by the technology used, the trajectory data are not pre-
cise due to measurement and sampling errors. Therefore, the recorded GPS positions
often need to be matched with the given road network (referred to as road map). This
process is called map-matching. Map-matching is integrated in many trajectory-based
applications as a pre-processing module, which aligns trajectory samples with the given
road networks. Quddus et al. [14] summarized the existing map-matching approaches
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and compared their performances. They addressed the measurement error problem and
focused on the sampling errors. While map-matching methods are effective in solving
the problem of sampling errors, few of them address the issues of inaccurate road maps
and ambiguous selections of roads for trajectory samples.

Road maps, considered as the vital input to map-matching, are not always reliable
due to two reasons. First, the update of road maps is not as frequent as the collection
of trajectory data. Usually, a city digital map is only updated monthly or even less
frequently, but the actual road changes happen everyday or even every hour in large
cities. Thus, some road changes might not be incorporated in the road maps used for
map-matching. Second, although the semi-automatic or fully-automatic methods used
for road-map extraction are often effective, they might still fail to obtain correct road
positions for various reasons, such as the low resolution of images, and the overlapping
of roads. Therefore, road maps should be checked for errors before they are used for
map-matching. Since road maps are complex and large, an effective visual analysis tool
for revealing and fixing road map errors is needed.

Another kind of uncertainty is the ambiguity in the selection of roads to match sam-
ples. An essential step of map-matching methods is selecting an appropriate road for an
off-road sample to align with. For that, the map-matching algorithms first select several
road candidates with loose conditions, and then score the road candidates with specific
cost functions, and finally choose the road with the highest score as the target. How-
ever, when the scores of the road candidates are similar, e.g., the sample positions fall in
the middle of multiple roads, all map-matchin algorithms will encounter the ambiguity
problem as it is no longer clear which road should be chosen.

Uncertainty involving low sampling rates is also a serious issue for reconstructing
trajectories. Some applications may need to reconstruct a vehicle’s continuous route
from its discrete trajectory samples. Due to low sampling rates, the collected trajectory
samples can be very sparse. Between two consecutive sparse samples, there may exist
several routes. Thus, additional information is needed to help choose routes to complete
the reconstruction. Historical data could be very helpful. For example, we can investi-
gate the historical data and check whether there are other relevant trajectories with
denser sampling rates in the region of interest. With the help of relevant trajectories, we
may have a better chance to find out the correct routes. In addition, by investigating the
uncertainty patterns in the data, we may find ways to reduce the uncertainty and improve
the data quality. For example, for areas dense with poor trajectory samples, we can add
some road-side-units to improve the position accuracy and increase the sampling rates.

To solve the uncertainty problem, it is vital to keep humans in the loop and present all
the relevant information to the users in an intuitive manner, especially for some fuzzy
patterns and tricky cases. In this paper, we present our visual analytics solutions to the
uncertainty problem in the trajectory data. Specifically, we propose two novel visual
designs, i.e., a road map analyzer for discovering potential errors in road maps, and an
uncertainty lens for resolving the uncertainty in trajectory data. We demonstrate how to
visually reveal the road map errors, resolve the ambiguities in map-matching, and re-
construct trajectories from sparse consecutive samples. We further test the effectiveness
and usefulness of our approach with three case studies on real trajectory data.
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The major contributions of our work are as follows:

— A visual design called road map analyzer to reveal errors in road maps based on
observed trajectory samples. Our visual design is able to discover map errors such
as road shifting and road missing.

— A visual design called uncertainty lens to reveal and resolve the uncertainty in the
trajectory data. Our method integrates multiple factors (e.g., speed, time, sparse-
ness, direction) related to uncertainty into a coherent analytical framework.

— Case studies with real trajectories and digital maps to demonstrate the effectiveness
and usefulness of the approach.

2 Related Work

Uncertainty Modeling. Kraak [7] proposed an interactive system to explore and vi-
sualize space-time data under a space time cube. Pfoser and Jensen[12] described the
notion of the uncertainty in sampling error and the error across time. Later, a cylindrical
model was presented by Trajcevski [16] to represent and capture the uncertainty for ef-
ficient querying. Most of the works solve the uncertainty problem in trajectory datasets,
but few of them address the uncertainty in the context of specific trajectory-based appli-
cations. In our work, we deal with the uncertainty issue in the context of map-matching
approaches, and address not only the uncertainty problem in trajectory datasets but also
the uncertainty issue in map-matching approaches.

Uncertainty Visualization. Visualization techniques have also been developed for
uncertainty, e.g., glyphs, error bars, scale modulation, and ambulation. Pang et al. [11]
proposed an uncertainty classification, studied its representation, and presented various
approaches for its visualization. Fisher [3] surveyed the literature on uncertainty visu-
alizations for bounded errors. Color and texture were considered to be the best choices
for visualizing uncertainty [2][5]. The traditional representations of uncertainty usually
consider uncertainty as a one-dimensional variable, but the uncertainty we want to ad-
dress is more complicated. Traditional methods are inadequate for solving our problem.

Map-Matching. To deal with the errors in trajectory datasets, various map-matching
approaches have been proposed and they can be categorized into three groups:
geometric-based methods[15], topological-based methods [4][10], and statistical meth-
ods [6]. Geometric-based methods are effective in finding local matches, but sensitive
to map errors. Extended from geometric-based methods, topological methods aim at
matching the entire trajectory to road maps by using the topologies of road networks.
Although topological methods are more robust than geometric-based methods, they still
suffer from various errors associated with navigation sensors and road maps. Statistical
models are employed in map-matching include Kalman Filter [6], and Bayesian clas-
sifier [13]. All map-matching approaches will encounter the ambiguity problem when
the trajectory samples fall into the middle of multiple roads. Besides, few of the ex-
isting works take the map errors into consideration, which has a big impact on the
map-matching results. In this paper, we present a novel visualization method to identify
and fix the map errors and propose a visual-guided approach to resolve the ambiguities.
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3 Visualization Design

3.1 Design Principles

We identify a few key principles to follow during the development of our designs: (1)
To address the uncertainty in trajectories, maps should be used to facilitate the analysis
but their errors should be identified and fixed first. The visualization schemes should
help reveal and differentiate different map errors.

(2) To resolve the uncertainty in samples, multiple factors (the maps, other trajecto-
ries, and the traffic) should be taken into account and these factors should be put into a
coherent analytical framework.

(3) The visualization mantra, “overview first, zoom and filter, then details-on-
demand”, will be followed.

3.2 Road Map Analyzer

As road maps are the critical reference for map-matching, road maps should be as ac-
curate as possible and the errors in road maps need to be identified and corrected. After
studying the map error problem and checking with domain experts, we focus on two
specific cases are commonly seen in applications: (a) Road Shifting. In this case, the
distribution of the samples forms a road shape, but the samples are not symmetric with
respect to the road. (b) Road Missing. In this case, samples are roughly separated into
multiple sets (usually two). The distribution of the samples forms two road shapes, and
one of them is different from the observed road. It is likely that the road near the ob-
served road is missing. Since the trajectory samples are sparse, we try to establish the
relations among the samples. Given the set of the samples, we first establish the rela-
tions by building a tree considering the samples as the nodes and the distances between
samples as the weights of the edges. The goal is to obtain a set of edges that minimize
the sum of the weights. After establishing the relations, we get a set of edges that link
the samples, called virtual edge. The virtual edges assign each pixel (on the display)
they covered a density value by weights. Then, we generate a density map with the
samples and their virtual edges. Finally we bound the density map by the bubble sets
algorithm [1]. Fig. 1 is an example of the visualization of the boundary, called bubble
view. Using the bubble view, we can easily detect the road error cases. For road shift-
ing case, the bubble doesn’t cover the observed road. For road missing case, the bubble
not only covers the observed road, but also forms a trace linking with other roads. We
also provide a statistical view that review statistical information of trajectory samples
on road. In this view, we encode the distribution of the samples by plotting the samples
into a tranform space. Each line represents a sample. It starts from a dot where indicates
the average distance of the samples to the road, passes through its relative position to
the road (left side or right side, by clockwise on the map), and ends on its projection on
the road. Fig. 6 gives an example of the statistical view.

3.3 Uncertainty Lens

Identifying and resolving the uncertainty in trajectory data are our major goals. To
achieve these goals, we design a novel visualization scheme, uncertainty lens, which
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Fig. 1. Bubble view. The bubble view helps the users to identify the map errors, and it is generated
from the trajectory samples around the observed road and the virtual edges linking the trajectory
samples.

Fig. 2. Uncertainty lens. The uncertainty lens magnifies relative roads and sorts relative trajectory
samples by their information (speed, error or sparseness). Based on the ordered information, the
uncertainty lens provides suggestions for resolving ambiguities.

integrates multiple visualizations into one display to present all the important informa-
tion that may help users resolve the uncertainty.

Fig.2 shows the design of the uncertainty lens which consists of relevant magnified
roads with the trajectory samples, and a set of system suggestions. The uncertainty lens
is overlaid on the geographical map. One straightforward way to observe the trajectory
samples is plotting the samples on the geographical map. In this way, users can quickly
find out the geographical information for the trajectory data and whether the samples
fall on roads. However, as the number of trajectory samples is usually very large, the
visualization becomes very cluttered. Therefore, we magnify the roads and re-order
the trajectory samples in a certain way to get a better view. Additionally, users often
need to consider other information besides maps to perform the analytical tasks, so
this information should also be presented. After discussing with domain experts, we
identify three features that are most important for analysis, including speed, error and
sparseness.

The uncertainty lens magnifies relevant roads and displays trajectory samples on the
relevant roads. For better analysis, the uncertainty lens encodes the speed, error, and
sparseness by users’ preferences. The encoding scheme is as follows.

— Position: We sort the trajectory sample by speed, error, or sparseness along the
relevant road direction. At the same time, we keep the distances of the samples to
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Fig. 3. System overview. Our system consists of two primary components. The input of the sys-
tem is a set of trajectory samples and a digital map. The digital map is firstly processed by the
module road map analyzer. The road map analyzer refines the digital map with the bubble views.
Then a map-matching process is applied on the trajectory data with the refined map. The uncer-
tainty analysis module analyzes the uncertainty of the trajectory data, resolves ambiguity, and
reconstructs continuous trajectories.

the center of the road. In this way, we encode the error information implicitly. But
users still can show the error information in an explicit way. The system uses speed
to sort by default.

— Color: Users can set color saturation to encode one measurement that is different
from the one used in the position visual channel.

4 System Overview and Workflow

Fig. 3 shows the overview of our system which consists of two primary components for
three major tasks (i.e., analyzing map errors, resolving ambiguities, and reconstructing
trajectories). The input to the system is a set of trajectory samples and a digital map.
The digital map is first processed by the module road map analyzer. The road map
analyzer refines the digital map with the help of the bubble views. With the refined
map, the map-matching process adjusts the observed positions of the trajectory sam-
ples, which partially solves the uncertainty problem in the data. After summarizing the
results of the map-matching, the uncertainty analysis module identifies the ambiguous
samples, analyzes the uncertainty of the ambiguous samples by using the uncertainty
lens, and resolves the ambiguities. Then, to reconstruct trajectories, the system extracts
the sparse consecutive samples with multiple route candidates. For selecting the best
candidate route as a partial trajectory, the uncertainty lens provides historical trajectory
information as hints for users to make decision.

Analyze Map Errors. Since the road network is large and complex, it is infeasible
to review every road segment or display the visualizations of the roads in a size-limited
screen. Therefore, our system computes the uncertainties of the roads and provides a
list of the uncertainties. The list is shown in Fig. 4(b). The texts and the colors of the
list cells refer to the identifications of the roads and their uncertainties respectively.
The light color indicates the high uncertainty while the dark color indicates the low
uncertainty (usually dark color suggests the correct road). The users can double click
the list to select the roads. Once a road is selected to observe, the main viewer (Fig. 4(c))
automatically zooms to fit the display to the road and shows the bubble view of the
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observed road. If the users find any road errors, they can refine the roads by drawing the
estimated roads manually.

Resolve Ambiguities. In our system, we leverage a map-matching approach [15] to
adjust the observed position of the trajectory samples with the refined map. The core
step in map-matching is to select an appropriate road for an off-road sample to align
with by utilizing a specific cost function. In some cases, the selections are quite certain
since the samples are close to a road. When the samples are reported in the middle of
multiple roads, the selections become ambiguous (the samples in this case are called
ambiguous samples). To resolve the ambiguities, we extract the ambiguous samples
from the map-matching results. To locate the ambiguous samples, our system provides
different levels of the map views. In low-level views, the system generates heatmaps
that describe the distribution of the ambiguous samples. In high-level views, the system
shows the ambiguous samples directly (using rectangles by default).

Once a set of ambiguous samples is focused, the uncertainty lens first auto-detects
the relevant roads according to the directions of the ambiguous samples. Then, the un-
certainty lens magnifies the relevant roads and displays the trajectory samples on the
relevant roads. The users can sort the samples by their preferences. For example, they
can sort the samples by speed and set the color of the samples by sparseness. After
that, the system sorts the ambiguous samples accordingly and shows the suggestions
for resolving the ambiguities. The users can resolve the ambiguities by clicking the am-
biguous samples to follow the system suggestions or dragging the ambiguous samples
to the roads depending on their own decisions.

Reconstruct Trajectories. Once the users load a trajectory, the system reconstructs
the trajectory from the most sparse sample pair. To find out the routes between a sample
pair, the system employs the time-space prism model [12]. By using this model, the
possible movement region (of the trajectory) between two neighboring samples can be
found. The moving object (such as vehicles) can only move within this region under
a given speed. Therefore, the possible routes are confined within this region. For any
sample pair, the system detects the possible routes. If there exists only one route, it con-
tinues to the next pair. If there exist multiple routes, the system shows the uncertainty
lens for choosing a route as a partial trajectory. In the uncertainty lens, every possi-
ble route refers to a relevant route. Similar to resolving ambiguities, the users can sort
the trajectory samples on the relevant routes. The system treats the trajectory between
the neighboring samples as an ambiguous sample with information from this pair of
samples. For example, the trajectory speed can be considered as the average speed of
its adjacent samples. In this way, the system can make the suggestion for the users to
choose a route.

S Experiment and Discussion

The entire system was developed using Java, DaVinci and JOSM. We tested our system
on a 1.8 GHz Intel Core i7 laptop with 4 GB DDR3. Raw map data were collected
from OpenStreetMap.org. Trajectory data were collected from 4,000 taxis in a big city
over an eight-month period. Each GPS record contains longitude, latitude, timestamp,
and logs of other activities. The preprocessing of the data includes removing erroneous
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trajectories with impossible speeds and storing the valid trajectories in binary files to
reduce the storage space and processing time.

Fig. 4 shows the system user interface. The system user interface consists of three
components, including a tool bar that enables users to perform operations such as select-
ing and zooming, a road list that uses color to show the uncertainties of the roads, and
a main viewer that provides the views of the geographical map, the road map analyzer,
and the uncertainty lens.
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Fig. 4. System user interface. The system user interface consists of three components, including
(a) a tool bar that enables users to perform operations such as selecting and zooming, (b) a road
list that uses color to show the uncertainties of the roads, and (c) a main viewer that provides the
views of the geographical map, the road map analyzer, and the uncertainty lens. In the road list,
the light color indicates the roads with high uncertainty while the dark color suggests the roads
with low uncertainty.

5.1 Experiment

To show the system usability, two transportation system researchers were invited to
use our system to investigate the uncertainty in trajectory data. We have consulted the
researchers when we design our system, so they are familiar with our design. We first
gave a tutorial for about 15 minutes, then the researchers played with our system and
did a test run to get familiar with the system user interface. After that, they were asked
to perform three tasks: (1) analyzing map errors, (2) resolving ambiguities, and (3)
reconstructing trajectories. The process for each researcher was about 40 minutes.
Analyzing Map Errors. In this task, the participants were asked to identify errors on
the map. They first investigated some roads by clicking the road list. Fig. 5 shows three
of the roads that the participant checked. The roads with different uncertainty showed
different patterns in the bubble views. For example, the uncertainty of the road in Fig. 5
(b) was very low. The bubble aligned this road very well. Therefore, the participants
considered this road was correct. For the case a participant found in Fig. 5 (c), it was
with high uncertainty. He observed the bubble view (a zoom view shown in Fig. 6
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Fig. 5. Roads with different uncertainties. (a) Road uncertainty=0.534, the road is probably with
errors. (b) Road uncertainty=0.001, the road is correct. (c) Road uncertainty=0.998, the road is
with errors.
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Fig. 6. Map error cases. (a) (b) Road shifting case. Most of the trajectory samples are reported
slightly away from the observed road (red dashed lines). The actual road position (blue lines) is
estimated using the bubble generated from the trajectory samples. (c) (d) Road missing case. The
bubble forms a trace from the observed road to another road, which means that a road is absent
from the map.

(a)) and recognized the road as a road shifting case. Because most of the trajectory
samples were not falling on the road and the bubble didn’t cover the road. He estimated
the road position according to the bubble (Fig. 6 (a)). For an interesting error another
participant found on Fig. 5 (a), the uncertainty of this road was medium. The uncertainty
of this road was medium. The bubble covered the observed road, which confirmed the
observed road is correct. However, the bubble formed a trace (without covering any
road) connecting to another road. He considered that a road was absent from the map.
Then he manually added the road on the map (Fig. 6(c)). The bubble view is effective
at revealing road missing and estimating the actual positions of road with errors.

Resolving Ambiguities. To resolve the ambiguities, a participant located the am-
biguous samples by using multiple level map views. He first selected a set of ambiguous
samples in the region in Fig. 7(a). Then he opened the uncertainty lens. The uncertainty
lens suggested two relevant roads (shown in Fig. 7(b)) and magnified them with the tra-
jectory samples (see Fig. 7(c)). After that, he chose to sort the samples by speed and use
the color to encode error. Following the setting by the participant, the system provided
the suggestions for the ambiguous samples. Fig. 7(d) shows the system suggestions
on the ambiguous samples by arrows. The arrows pointed to the road that the system
recommended for the ambiguous samples. The participant resolved the ambiguities by
clicking on the ambiguous samples (shown in Fig. 7(e)). Finally the ambiguous samples
moved to the road (see Fig. 7(f)). From the task, the system’s capability of resolving the
ambiguities in map-matching was confirmed.
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Fig. 7. Resolving ambiguities. (a) User selects a region to resolve ambiguous samples. (b) System
suggests two candidate roads according to the directions of the ambiguous samples. (c) The sys-
tem magnifies the candidate roads and shows the trajectory samples positioning on the roads. (d)
Trajectory samples and ambiguous samples are sorted according to their speeds. And the system
provides suggestions for the ambiguous samples. (e) User makes the decision according to the
system suggestions. (f) Ambiguous samples are resolved and placed on the roads.

Reconstructing Trajectories. A participant started the task with loading a sparse
trajectory. The system focused on the most sparse sample pair at the beginning. He
reconstructed the trajectory pair by pair. Fig.8 shows a process of the participant re-
constructing one trajectory between a pair of samples. The system focused on a partial
trajectory that needed to be reconstructed. In Fig. 8 (a), this trajectory didn’t pass any
roads. The system computed the possible movement region for the sample pair and
found out two possible routes (Route 1 and Route 2). Then, the participant opened the
uncertainty lens. The uncertainty lens combined the roads in the routes and magnified
the routes (Fig.8 (b)). After that, the participant sorted the trajectory samples on the
routes, and obtained system suggestion (Fig.8 (c)). The system suggested the trajectory
should pass Route 1. Finally, he reconstructed the trajectory by accepting system sug-
gestion. Fig. 8 (d) depicts reconstruction result. From the task, the usefulness of our
system for reconstructing the continuous trajectories was confirmed.

5.2 User Feedback

We consulted two experts who have expertise in intelligent transportation system re-
search for comments after internally testing our system. They both have worked with
trajectory data and are familiar with map-matching.

The well-designed visual encoding schemes to resolve uncertainty in trajectory data
and the highly supported interactions with users are greatly appreciated by the experts.
Especially the powerful encoding scheme to reveal errors in road maps as well as the
method to reveal the uncertainty in the trajectory data received very positive comments.
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Fig. 8. Reconstructing a trajectory. (a) A sparse trajectory doesn’t pass any roads. System com-
putes the possible movement region for its adjacent samples. Within the possible movement re-
gion, the system finds out two possible routes. (b) Uncertainty lens combines the roads on the
routes and magnifies the routes. It shows the trajectory samples on the routes at the same time.
(c) Uncertainty lens re-orders the trajectory samples and the system provides a suggestion ac-
cordingly. (d) Reconstruction result.

These features largely improved the user experiences in traffic data exploration. Com-
pared with their current map-matching analysis tools, which only plots the trajectory
samples on the map to reconstruct the trajectory, our system makes the whole explo-
ration process much more accurate and free of map errors. According to the feedback,
our system is also good for demonstration. The visualization provides intuitive inter-
face for understanding the trajectory data with many unique attributes. Utilizing the
uncertainty lenses, users can gain insight into the speed, time, and direction attributes
of the data which are very useful to detect the anomaly of the traffic, study drivers’
driving patterns, and investigate the passengers’ distribution. Our visual analytics cases
are very convincing for domain experts. The analysis of the traffic patterns and trajec-
tory reconstruction is considered very valuable to guide the road traffic capacity design
and driving pattern study. The discovery of the map errors in Fig. 6 greatly attracts the
experts’ attention. The detected map errors are later confirmed by their manual inspec-
tion on and comparison of different versions of the maps. The experts also feel excited
that the ambiguity analysis and demonstration of our system shows a data exploration
process that is more promising than traditional methods to retrieve driving patterns.

6 Conclusion

In this paper we have presented a comprehensive visual analytics system for revealing
and resolving the uncertainty in trajectory data. Two novel encoding schemes are de-
signed. The experiments with real data, three case studies, and the feedback from the
domain experts, have demonstrated the effectiveness of our system.
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